-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathextraction_commoncrawl.py
314 lines (258 loc) · 13.3 KB
/
extraction_commoncrawl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import numpy as np
import sys
import math
import torch
import zlib
from transformers import AutoTokenizer, AutoModelForCausalLM
from collections import defaultdict
from tqdm import tqdm
from pprint import pprint
import pandas as pd
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
LOW_MEMORY = True
def load_tokenizer_for_causal_lm(model_name):
"""
Load tokenizer with required config changes
"""
tokenizer = AutoTokenizer.from_pretrained(model_name)
# For Autoregressive models, padding on the right would mean the model
# will receive padded tokens as context, which is not useful during generation
tokenizer.padding_side = 'left'
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def load_model_for_causal_lm(model_name, device):
"""
Load model with required config changes
"""
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=LOW_MEMORY).to(device)
model.config.pad_token_id = model.config.eos_token_id
model.eval()
return model
def calculate_perplexity(input_sentence, model, tokenizer, device):
"""
Calculate exp(loss), where loss is obtained py passing tokenized input sentence to the model
with the labels set as the same tokenized input (the shifting of the labels is done internally)
https://huggingface.co/docs/transformers/v4.20.1/en/model_doc/gpt2#transformers.GPT2LMHeadModel.forward.labels
"""
tokenized = tokenizer(input_sentence)
input = torch.tensor(tokenized.input_ids).to(device)
with torch.no_grad():
output = model(input, labels=input)
return torch.exp(output.loss)
def calculate_perplexity_sliding(input_sentence, model, tokenizer, device, window_size=50):
"""
Calculate min(exp(loss)) over a sliding window
"""
tokenized = tokenizer(input_sentence)
input = torch.tensor(tokenized.input_ids).to(device)
min_perplexity = 100000
with torch.no_grad():
for start_idx in range(input.shape[0]-window_size):
input_window = input[start_idx: start_idx+window_size]
output = model(input_window, labels=input_window)
min_perplexity = min(min_perplexity, torch.exp(output.loss))
return min_perplexity
def print_best(metric, samples, metric_name, name1, scores1, name2=None, scores2=None, lower_better=True, n=10):
"""
Print the top-n best samples according to the given metric
"""
if lower_better:
idxs = np.argsort(metric)[:n]
else:
idxs = np.argsort(metric)[::-1][:n]
print("Metric Name:", metric_name)
for i, idx in enumerate(idxs):
if scores2 is not None:
print(f"{i+1}: {name1}={scores1[idx]:.3f}, {name2}={scores2[idx]:.3f}, score={metric[idx]:.3f}")
else:
print(f"{i+1}: {name1}={scores1[idx]:.3f}, , score={metric[idx]:.3f}")
print()
pprint(samples[idx])
print()
print()
def print_best_to_file(outfile, metric, samples, metric_name, name1, scores1, name2=None, scores2=None, lower_better=True, n=100):
"""
Print the top-n best samples according to the given metric to a file
"""
original_stdout = sys.stdout # Save a reference to the original standard output
with open(outfile, 'a') as f:
sys.stdout = f # Change the standard output to the file we created.
print("Metric Name:", metric_name)
if lower_better:
idxs = np.argsort(metric)[:n]
else:
idxs = np.argsort(metric)[::-1][:n]
for i, idx in enumerate(idxs):
if scores2 is not None:
print(f"{i+1}: {name1}={scores1[idx]:.3f}, {name2}={scores2[idx]:.3f}, score={metric[idx]:.3f}")
else:
print(f"{i+1}: {name1}={scores1[idx]:.3f}, , score={metric[idx]:.3f}")
print()
print(samples[idx])
print()
print()
print()
print()
sys.stdout = original_stdout # Reset the standard output to its original value
def parse_commoncrawl(wet_file):
"""
Quick and ugly parsing of a WET file.
Tested for the May 2021 crawl.
"""
with open(wet_file) as f:
lines = f.readlines()
start_idxs = [i for i in range(len(lines)) if "WARC/1.0" in lines[i]]
all_eng = ""
count_eng = 0
for i in range(len(start_idxs)-1):
start = start_idxs[i]
end = start_idxs[i+1]
if "WARC-Identified-Content-Language: eng" in lines[start+7]:
count_eng += 1
for j in range(start+10, end):
all_eng += lines[j]
return all_eng
def main(args):
# Load models
print("Loading models...")
TOKENIZER_GPT2 = load_tokenizer_for_causal_lm("gpt2")
MODEL_GPT2 = load_model_for_causal_lm("gpt2", device)
# MODEL_GPT2_MEDIUM = load_model_for_causal_lm("gpt2-medium", device)
MODEL_GPT2_XL = load_model_for_causal_lm("gpt2-xl", device)
print("GPT2 and GPT2-XL models loaded!")
print("Loading commoncrawl...")
cc_data = parse_commoncrawl(args.wet_file)
# number of tokens to generate (from paper)
seq_len = 256
# k in top_k sampling (from paper)
top_k = 40
num_batches = int(math.ceil(args.N / args.batch_size))
new_tot = num_batches * args.batch_size
generated_samples = []
scores = defaultdict(list)
with tqdm(total=new_tot) as pbar:
for batch in range(num_batches):
input_len = 10
prompts = []
input_ids = []
attention_mask = []
while len(input_ids) < args.batch_size:
# take some random words in common crawl
r = np.random.randint(0, len(cc_data))
prompt = " ".join(cc_data[r:r+100].split(" ")[1:-1])
# print(prompt)
# make sure we get the same number of tokens for each prompt to enable batching
inputs = TOKENIZER_GPT2(prompt, return_tensors="pt", max_length=input_len, truncation=True)
if len(inputs['input_ids'][0]) == input_len:
input_ids.append(inputs['input_ids'][0])
attention_mask.append(inputs['attention_mask'][0])
inputs = {'input_ids': torch.stack(input_ids).to(device),
'attention_mask': torch.stack(attention_mask).to(device)}
# the actual truncated prompts (not needed)
# prompts = TOKENIZER_GPT2.batch_decode(inputs['input_ids'], skip_special_tokens=True)
# Batched sequence generation
generated_sequences = MODEL_GPT2_XL.generate(
input_ids = inputs['input_ids'],
attention_mask = inputs['attention_mask'],
max_length = seq_len,
do_sample = True,
top_k = top_k,
top_p = 1.0
)
generated_texts = TOKENIZER_GPT2.batch_decode(generated_sequences, skip_special_tokens=True)
for text in generated_texts:
# Calculate perplexity of GPT-XL, GPT2-Small and GPT2-Medium on each generated text
perplexity_gpt2_xl = calculate_perplexity(text, MODEL_GPT2_XL, TOKENIZER_GPT2, device)
perplexity_gpt2 = calculate_perplexity(text, MODEL_GPT2, TOKENIZER_GPT2, device)
# perplexity_gpt2_medium = calculate_perplexity(text, MODEL_GPT2_MEDIUM, TOKENIZER_GPT2, device)
# Calculate perplexity of GPT-XL on each lower-cased text
perplexity_gpt2_xl_lower = calculate_perplexity(text.lower(), MODEL_GPT2_XL, TOKENIZER_GPT2, device)
# Calculate Z-lib entropy of sample
zlib_entropy = len(zlib.compress(bytes(text, 'utf-8')))
# Calculate minimum perplexity of GPT2-XL across any sliding window of 50 tokens
perplexity_gpt2_xl_window = calculate_perplexity(text.lower(), MODEL_GPT2_XL, TOKENIZER_GPT2, device)
generated_samples.append(text)
scores["XL"].append(perplexity_gpt2_xl.cpu())
scores["SMALL"].append(perplexity_gpt2.cpu())
# scores["MEDIUM"].append(perplexity_gpt2_medium.cpu())
scores["ZLIB"].append(zlib_entropy)
scores["LOWER"].append(perplexity_gpt2_xl_lower.cpu())
scores["WINDOW"].append(perplexity_gpt2_xl_window.cpu())
pbar.update(args.batch_size)
print(len(scores["XL"]))
scores["XL"] = np.asarray(scores["XL"])
scores["SMALL"] = np.asarray(scores["SMALL"])
# scores["MEDIUM"] = np.asarray(scores["MEDIUM"])
scores["ZLIB"] = np.asarray(scores["ZLIB"])
scores["LOWER"] = np.asarray(scores["LOWER"])
scores["WINDOW"] = np.asarray(scores["WINDOW"])
# Remove duplicate samples
idxs = pd.Index(generated_samples)
idxs_mask = ~(idxs.duplicated())
print(idxs_mask)
generated_samples_clean = np.asarray(generated_samples)[idxs_mask]
generated_samples_clean = generated_samples_clean.tolist()
scores["XL"] = scores["XL"][idxs_mask]
scores["SMALL"] = scores["SMALL"][idxs_mask]
# scores["MEDIUM"] = scores["MEDIUM"][idxs_mask]
scores["ZLIB"] = scores["ZLIB"][idxs_mask]
scores["LOWER"] = scores["LOWER"][idxs_mask]
scores["WINDOW"] = scores["WINDOW"][idxs_mask]
assert len(generated_samples_clean) == len(scores["XL"])
assert len(scores["SMALL"]) == len(scores["XL"])
print("Num duplicates:", len(generated_samples) - len(generated_samples_clean))
# Show best samples based on Metrics
# Sort by perplexity of GPT2-XL
metric = np.log(scores["XL"])
print(f"======== top samples by XL perplexity: ========")
print_best(metric, generated_samples_clean, "Sort by perplexity of GPT2-XL", "PPL-XL", scores["XL"], lower_better=True)
print_best_to_file(args.outfile, metric, generated_samples_clean, "Sort by perplexity of GPT2-XL", "PPL-XL", scores["XL"], lower_better=True)
print()
print()
# Sort by ratio of perplexity of GPT2-XL and GPT2-Small
metric = np.log(scores["XL"]) / np.log(scores["SMALL"])
print(f"======== top samples by ratio of XL and SMALL perplexity: ========")
print_best(metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL and GPT2-Small", "PPL-XL", scores["XL"], "PPL-SMALL", scores["SMALL"], lower_better=True)
print_best_to_file(args.outfile, metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL and GPT2-Small", "PPL-XL", scores["XL"], "PPL-SMALL", scores["SMALL"], lower_better=True)
print()
print()
# Sort by ratio of perplexity of GPT2-XL and GPT2-Medium
# metric = np.log(scores["XL"]) / np.log(scores["MEDIUM"])
# print(f"======== top samples by ratio of XL and SMALL perplexity: ========")
# print_best(metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL and GPT2-Medium", "PPL-XL", scores["XL"], "PPL-MEDIUM", scores["MEDIUM"], lower_better=True)
# print_best_to_file(metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL and GPT2-Medium", "PPL-XL", scores["XL"], "PPL-MEDIUM", scores["MEDIUM"], lower_better=True)
# print()
# print()
# Sort by ratio of XL perplexity and ZLIB entropy
metric = np.log(scores["XL"]) / np.log(scores["ZLIB"])
print(f"======== top samples by ratio of XL perplexity and ZLIB entropy: ========")
print_best(metric, generated_samples_clean, "Sort by ratio of XL perplexity and ZLIB entropy", "PPL-XL", scores["XL"], "Entropy-Zlib", scores["ZLIB"], lower_better=True)
print_best_to_file(args.outfile, metric, generated_samples_clean, "Sort by ratio of XL perplexity and ZLIB entropy", "PPL-XL", scores["XL"], "Entropy-Zlib", scores["ZLIB"], lower_better=True)
print()
print()
# Sort by ratio of perplexity of GPT2-XL on normal and lower-cased sample
metric = np.log(scores["XL"]) / np.log(scores["LOWER"])
print(f"======== top samples by ratio of perplexity of GPT2-XL on normal and lower-cased sample: ========")
print_best(metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL on normal and lower-cased sample", "PPL-XL", scores["XL"], "PPL-XL-Lower", scores["LOWER"], lower_better=True)
print_best_to_file(args.outfile, metric, generated_samples_clean, "Sort by ratio of perplexity of GPT2-XL on normal and lower-cased sample", "PPL-XL", scores["XL"], "PPL-XL-Lower", scores["LOWER"], lower_better=True)
print()
print()
# Sort by minimum perplexity of GPT2-XL on window of size 50
metric = np.log(scores["WINDOW"])
print(f"======== top samples by minimum XL perplexity across a sliding window of size 50: ========")
print_best(metric, generated_samples_clean, "Sort by minimum perplexity of GPT2-XL on window of size 50", "PPL-WINDOW", scores["WINDOW"], lower_better=True)
print_best_to_file(args.outfile, metric, generated_samples_clean, "Sort by minimum perplexity of GPT2-XL on window of size 50", "PPL-WINDOW", scores["WINDOW"], lower_better=True)
print()
print()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--wet-file', type=str, help='Path to Commoncrawl WET file')
parser.add_argument('--N', default=20, type=int, help='Number of samples to generate')
parser.add_argument('--batch_size', default=6, type=int, help='Batch size')
parser.add_argument('--outfile', type=str, help='Output file to log top samples based on each metric')
args = parser.parse_args()
main(args)