-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathautoencoder_factor.py
539 lines (464 loc) · 19.8 KB
/
autoencoder_factor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
"""
オートエンコーダを使用したファクターの生成
元論文: https://www.sciencedirect.com/science/article/abs/pii/S0304407620301998
"""
from datetime import datetime
import math
import os
# keras
from keras import regularizers
from keras.callbacks import EarlyStopping, LearningRateScheduler
from keras.datasets import mnist
from keras.layers import BatchNormalization, Dense, dot, Dropout, Flatten, Input, LeakyReLU, ReLU, Reshape
from keras.layers.recurrent import LSTM
from keras.layers.wrappers import Bidirectional
from keras.models import Model
from keras.optimizers import Nadam, Adam, SGD
from keras.utils.vis_utils import plot_model # to visualize model structure
# sklearn
import sklearn
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import numpy as np
import pandas as pd
import pandas_datareader.data as pdr
import matplotlib.pyplot as plt
# パラメタ
NUM_PLOT = 20
FILE_PATH = "data/index_data.csv"
STATS_PATHS = {
"LIQ": "data/volume_data.csv",
}
NUM_FACTOR = 3
NUM_BETA_LAG = 1
NUM_EPOCH = 100
NUM_BATCH = 100
LR = 0.01
TRAIN_START = '2011/1/1'
TRAIN_END = '2018/12/31'
TEST_START = '2019/1/1'
TEST_END = '2019/12/31'
IS_RECURRENT = False
IS_STATS = True
# 日付演算用に型変換
TRAIN_START = datetime.strptime(TRAIN_START, '%Y/%m/%d')
TRAIN_END = datetime.strptime(TRAIN_END, '%Y/%m/%d')
TEST_START = datetime.strptime(TEST_START, '%Y/%m/%d')
TEST_END = datetime.strptime(TEST_END, '%Y/%m/%d')
# ---------------------------------------------------------
# グラフ作成用関数
# ---------------------------------------------------------
def plot_learn_history(history, save_path="image/learn_history.png"):
# 損失関数の推移を確認
plt.plot(range(1, NUM_EPOCH+1), history['loss'], label="Training Loss")
plt.plot(range(1, NUM_EPOCH+1),
history['val_loss'], label="Validation Loss")
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.yscale('log')
plt.legend()
plt.savefig(save_path)
plt.close()
def plot_factors(x_data, factors, save_path):
factors = factors.T
# 平均0%・標準偏差年率10%にスケーリング(年間260日基準)
for i in range(NUM_FACTOR):
m = np.mean(factors[i])
sd = np.std(factors[i])
factors[i] = [(f - m) / sd * (0.1 / math.sqrt(260))
for f in factors[i]]
factors = np.array(factors)
# 100スタートのインデックスに変形
for i in range(NUM_FACTOR):
factors[i] = 100 * (1 + factors[i]).cumprod()
# 比較してプロット
plt.figure()
for i in range(NUM_FACTOR):
plt.plot(x_data.index, factors[i], label="factor_{}".format(i+1))
plt.legend(loc='upper right')
plt.savefig(save_path)
plt.close()
return factors
def round_data(x_data, quantile_point=0.01):
down_quantiles = x_data.quantile(quantile_point)
upper_quantiles = x_data.quantile(1.0-quantile_point)
outliers_low = (x_data < down_quantiles)
outliers_up = (x_data > upper_quantiles)
x_data[outliers_low] = np.nan
x_data = x_data.fillna(down_quantiles)
x_data[outliers_up] = np.nan
x_data = x_data.fillna(upper_quantiles)
return x_data
# ---------------------------------------------------------
# 決定係数
# see: https://statisticsbyjim.com/regression/interpret-adjusted-r-squared-predicted-r-squared-regression/
# ---------------------------------------------------------
def calcu_r_squared(ret, pred_ret, is_sep=False):
# 決定係数を計算
if not is_sep:
ret = np.array(ret)
sse = np.square((ret - pred_ret)).sum()
sst = np.square(ret - ret.mean()).sum()
return 1 - sse/sst
def calcu_pred_r_squared(x_data, factors, betas):
# factorのt-1までの平均
factors = pd.DataFrame(factors)
factors.index = x_data.index
factors.columns = ["factor_{}".format(i+1) for i in range(NUM_FACTOR)]
factors = factors.expanding().mean().shift(1).dropna()
# 個別のベータを取得してbeta*上記の平均を計算
upper_sum = 0
for i_firm in range(x_data.shape[1]):
f_times_b = []
for i_factor in range(NUM_FACTOR):
beta = betas.T[i_factor][i_firm][1:]
factor = factors.iloc[:, i_factor]
f_times_b.append(beta * factor)
f_times_b = pd.DataFrame(f_times_b).T.sum(axis=1)
ret = x_data.iloc[1:, i_firm]
upper_sum += np.square(ret - f_times_b).sum()
# 合算してR-squaredに
lower_sum = np.square(x_data.iloc[1:, :]).sum().sum()
pred_r_squared = 1 - upper_sum / lower_sum
return pred_r_squared
# ---------------------------------------------------------
# 訓練データとテストデータを準備
# ---------------------------------------------------------
# データを読み込み
asset_index = pd.read_csv(FILE_PATH, encoding="shift_jis", index_col=0)
asset_index = asset_index.dropna(how="all").dropna(axis=1).dropna()
# 前日と全く同じ指数値の場合には取引なしと見なして削除
dup_list = []
for i in range(asset_index.index.shape[0]-1):
if all(asset_index.iloc[i+1, :] == asset_index.iloc[i, :]):
dup_list.append(i+1)
asset_index = asset_index.drop(asset_index.index[dup_list])
asset_return = asset_index.pct_change().dropna()
if IS_STATS:
# 経済データを使用する場合
# モメンタム
asset_chars = asset_index.diff(5)
asset_chars = pd.concat(
[asset_chars, asset_index.diff(20)], axis=1).dropna()
# ボラティリティ
asset_chars = pd.concat(
[asset_chars, asset_return.rolling(5).std(ddof=0)], axis=1).dropna()
asset_chars = pd.concat(
[asset_chars, asset_return.rolling(20).std(ddof=0)], axis=1).dropna()
# 流動性
volume = pd.read_csv(STATS_PATHS["LIQ"], encoding="shift_jis", index_col=0)
volume = volume.dropna(how="all").dropna(axis=1).dropna()
volume_sd = volume.rolling(20).std(ddof=0)
asset_chars = pd.concat([asset_chars, volume], axis=1).dropna()
asset_chars = pd.concat([asset_chars, volume_sd], axis=1).dropna()
# 差分追加版
# asset_chars = pd.concat([asset_chars, asset_chars.diff(5)],
# axis=1).shift(1).dropna()
# asset charsは一日ラグを設ける
asset_chars = asset_chars.shift(1).dropna()
if not IS_RECURRENT:
# 過去NUM_BETA_LAG日前~前日のデータを使用
base_chars = asset_chars
for i in range(NUM_BETA_LAG-1):
base_chars = pd.concat(
[base_chars, asset_chars.shift(i+1)], axis=1)
asset_chars = base_chars
asset_chars = asset_chars.dropna()
else:
# 経済データは使用せず、過去NUM_BETA_LAG日前~前日のデータを使用
asset_chars = []
for i in range(asset_return.shape[0] - NUM_BETA_LAG):
asset_char = []
for j in range(NUM_BETA_LAG):
asset_char.append(np.array(asset_return.iloc[i+j, :]))
asset_chars.append(asset_char)
asset_chars = np.array(asset_chars)
# インデックスの型を変更し、ラグ部分のデータを削除
asset_return.index = np.array([datetime.strptime(x, '%Y/%m/%d')
for x in asset_return.index])
# 特徴データを使用する場合に使用
if IS_STATS:
asset_chars.index = np.array([datetime.strptime(x, '%Y/%m/%d')
for x in asset_chars.index])
common_index = np.intersect1d(asset_return.index, asset_chars.index)
# 共通部分のみ使用する
asset_return = asset_return.loc[common_index]
asset_chars = asset_chars.loc[common_index]
# サンプル分割を実施
is_train = (asset_return.index >= TRAIN_START) * \
(asset_return.index <= TRAIN_END)
is_test = (asset_return.index >= TEST_START) * (asset_return.index <= TEST_END)
x_train_org = asset_return[is_train]
x_test_org = asset_return[is_test]
x_train_chars = asset_chars[is_train]
x_test_chars = asset_chars[is_test]
# 学習データの中で明らかに変な値があるので、丸め処理を実施
# TRデータの場合には実施しない
# x_train_org = round_data(x_train_org, quantile_point=0.005)
# x_train_chars = round_data(x_train_chars, quantile_point=0.005) # 何故かこっちだけ機能しない
print(np.max(x_train_org.max()))
# 標準化:今は資産の特徴データにのみ適用
x_scaler = StandardScaler()
x_scaler.fit(x_train_org)
x_train = pd.DataFrame(x_scaler.transform(x_train_org),
index=x_train_org.index, columns=x_train_org.columns)
x_test = pd.DataFrame(x_scaler.transform(x_test_org),
index=x_test_org.index, columns=x_test_org.columns)
x_chars_scaler = StandardScaler()
x_chars_scaler.fit(x_train_chars)
x_train_chars = x_chars_scaler.transform(x_train_chars)
x_test_chars = x_chars_scaler.transform(x_test_chars)
# ---------------------------------------------------------
# ネットワークの定義
# - Dropoutをしないと過学習が酷い
# - 元論文を参考にl1正則化を使用
# see also:https://liaoyuan.hatenablog.jp/entry/2018/02/13/231430
# ---------------------------------------------------------
input_shape = x_train.shape[1]
# ベータを生成する層
if IS_RECURRENT:
# LSTM
input_beta = Input(shape=(NUM_BETA_LAG, input_shape))
x = Bidirectional(LSTM(64, batch_input_shape=(
None, x_train_chars.shape[1], x_train_chars.shape[2]), recurrent_dropout=0.25))(input_beta)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
# x = ReLU()(x)
x = Dropout(0.20)(x)
else:
input_beta = Input(shape=(x_train_chars.shape[1],))
# x = Flatten()(input_beta)
x = Dense(256, kernel_regularizer=regularizers.l1(1e-3))(input_beta)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.3)(x)
# x = ReLU()(x)
x = Dropout(0.20)(x)
x = Dense(128, kernel_regularizer=regularizers.l1(1e-3))(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.3)(x)
x = Dropout(0.50)(x)
x = Dense(128, kernel_regularizer=regularizers.l1(1e-3))(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.3)(x)
x = Dropout(0.50)(x)
x = Dense(NUM_FACTOR * input_shape, activation='linear')(x)
output_beta = Reshape((input_shape, NUM_FACTOR))(x)
model_beta = Model(inputs=input_beta, outputs=output_beta) # beta確認用
# ファクターを生成する層
input_factor = Input(shape=(input_shape,))
output_factor = Dense(NUM_FACTOR, activation='linear',
kernel_regularizer=regularizers.l1(1e-3))(input_factor)
model_factor = Model(inputs=input_factor, outputs=output_factor) # factor確認用
output = dot([output_beta, output_factor], axes=(2, 1))
# 上記を結合してオートエンコーダを定義
# adam = Adam(lr=0.001)
nadam = Nadam()
autoencoder = Model(inputs=[input_beta, input_factor], output=output)
autoencoder.compile(optimizer="adam", loss='mean_squared_error')
autoencoder.summary()
plot_model(autoencoder, to_file="image/model_image.png",
show_shapes=True, show_layer_names=False) # モデルの構造を出力
def step_decay(epoch):
# 学習率をエポックごとに調整
# see: https://keras.io/ja/optimizers/
x = LR
if epoch >= NUM_EPOCH * 0.25:
x *= 0.1
if epoch >= NUM_EPOCH * 0.50:
x *= 0.1
return x
# 早期終了を実施
# early_stopping = EarlyStopping(
# monitor='val_loss',
# min_delta=0.0,
# patience=10)
lr_decay = LearningRateScheduler(step_decay)
result = autoencoder.fit(x=[x_train_chars, x_train],
y=x_train,
validation_split=0.1,
epochs=NUM_EPOCH,
batch_size=NUM_BATCH,
callbacks=[lr_decay])
# 損失関数の推移を確認
plot_learn_history(result.history)
# 各ファクターを構成する銘柄の内訳情報を取得
factor_weight = autoencoder.get_layer(index=-2).get_weights()[0].T
norm_weight = pd.DataFrame()
for i, fw in enumerate(factor_weight):
norm_weight["factor_{}".format(i+1)] = fw/sum(fw) # ウェイト合計100%になるように
norm_weight.index = x_train.columns
norm_weight.to_csv("stats/factor_weight.csv", encoding="shift_jis")
# ---------------------------------------------------------
# インサンプルの系列比較
# ---------------------------------------------------------
# デコードされたリターン系列を作成
decoded_return = autoencoder.predict([x_train_chars, x_train])
decoded_return = x_scaler.inverse_transform(decoded_return)
r_2s = np.array(calcu_r_squared(x_train_org, decoded_return, is_sep=True))
for num_index in range(NUM_PLOT):
# 累積リターンに変更
cum_ret = 100 * (1 + x_train_org.iloc[:, num_index]).cumprod()
cum_ret_decoded = 100 * (1 + decoded_return[:, num_index]).cumprod()
# 比較してプロット
plt.figure()
plt.title("{} R2={}".format(
x_train.iloc[:, num_index].name, round(r_2s[num_index]*100, 2)), fontname="MS Gothic")
plt.plot(x_train.index, cum_ret, label="Original")
plt.plot(x_train.index, cum_ret_decoded, label="After AE")
plt.legend(loc='upper right')
# plt.show()
plt.savefig("image/res_insample_{}.png".format(num_index))
plt.close()
# 決定係数ベースでモデルの評価を実施
print(calcu_r_squared(x_train_org, decoded_return))
# predictive R-squared
# factors = model_factor.predict(x_train)
# betas = model_beta.predict(x_train_chars)
# print("pred R2:{}".format(calcu_pred_r_squared(x_train, factors, betas)))
# ファクター系列を確認
factors = model_factor.predict(x_train)
plot_factors(x_train, factors, "image/factor_insample.png")
# ベータ系列を確認・解釈
betas = model_beta.predict(x_train_chars)
for i_firm in range(NUM_PLOT):
firm_name = x_train.iloc[:, i_firm].name
for i_factor in range(NUM_FACTOR):
beta = betas.T[i_factor][i_firm]
plt.figure()
plt.title(firm_name, fontname="MS Gothic")
plt.plot(x_train.index, beta, label="beta_insample_factor_{}".format(
i_factor+1))
plt.legend(loc='upper right')
# plt.show()
plt.savefig(
"image/beta_insample_{}_factor_{}".format(firm_name, i_factor+1))
plt.close()
# ---------------------------------------------------------
# アウトオブサンプルの系列比較
# ---------------------------------------------------------
# デコードされたリターン系列を作成
decoded_return = autoencoder.predict([x_test_chars, x_test])
decoded_return = x_scaler.inverse_transform(decoded_return)
r_2s = np.array(calcu_r_squared(x_test, decoded_return, is_sep=True))
for num_index in range(NUM_PLOT):
# 累積リターンに変更
cum_ret = 100 * (1 + x_test_org.iloc[:, num_index]).cumprod()
cum_ret_decoded = 100 * (1 + decoded_return[:, num_index]).cumprod()
# 比較してプロット
plt.figure()
plt.title("{} R2={}".format(
x_test.iloc[:, num_index].name, round(r_2s[num_index]*100, 2)), fontname="MS Gothic")
plt.plot(x_test.index, cum_ret, label="Original")
plt.plot(x_test.index, cum_ret_decoded, label="After AE")
plt.legend(loc='upper right')
# plt.show()
plt.savefig("image/res_outsample_{}.png".format(num_index))
plt.close()
print(calcu_r_squared(x_test_org, decoded_return))
# ファクター系列を確認
factors = model_factor.predict(x_test)
plot_factors(x_test, factors, "image/factor_outsample.png")
# ---------------------------------------------------------
# ファクター解釈用に経済データを追加
# - マクロファクターっぽい解釈は難しそう
# - 比較対象は株のスタイルファクターの方が良さげ?
# ---------------------------------------------------------
factors = model_factor.predict(x_train)
factors = factors.T
# 平均0%・標準偏差年率10%にスケーリング(年間260日基準)
for i in range(NUM_FACTOR):
m = np.mean(factors[i])
sd = np.std(factors[i])
factors[i] = [(f - m) / sd * (0.1 / math.sqrt(260))
for f in factors[i]]
factor_data = pd.DataFrame(factors).T
factor_data.index = x_train.index
factor_data.columns = ["factor_{}".format(i+1) for i in range(NUM_FACTOR)]
# 経済データを取得
factor_data["日経225"] = pdr.DataReader(
'^N225', 'yahoo', TRAIN_START, TRAIN_END)['Close'].pct_change()
factor_data["ドル円"] = pdr.DataReader(
'JPY=X', 'yahoo', TRAIN_START, TRAIN_END)['Close'].pct_change()
# 日経225の特徴データ
nikkei = pdr.DataReader('^N225', 'yahoo', TRAIN_START, TRAIN_END)['Close']
# ---------------------------------------------------------
# PCAを用いた分解
# ---------------------------------------------------------
pca = PCA(n_components=NUM_FACTOR)
pca.fit(x_train)
pca_factors = pca.transform(x_train)
pca_factors = pca_factors.T
# 平均0%・標準偏差年率10%にスケーリング(年間260日基準)
for i in range(NUM_FACTOR):
m = np.mean(pca_factors[i])
sd = np.std(pca_factors[i])
pca_factors[i] = [(f - m) / sd * (0.1 / math.sqrt(260))
for f in pca_factors[i]]
pca_factors = np.array(pca_factors)
# 100スタートのインデックスに
for i in range(NUM_FACTOR):
pca_factors[i] = 100 * (1 + pca_factors[i]).cumprod()
# 比較してプロット
plt.figure()
for i in range(NUM_FACTOR):
plt.plot(x_train.index, pca_factors[i],
label="pca_factor_{}".format(i+1))
plt.legend(loc='upper right')
# plt.show()
plt.savefig("image/pca_factor_insample.png")
plt.close()
# ---------------------------------------------------------
# PCA:インサンプルの比較
# ---------------------------------------------------------
# デコードされたリターン系列を作成
decoded_return = pca.inverse_transform(pca.transform(x_train))
decoded_return = x_scaler.inverse_transform(decoded_return)
for num_index in range(NUM_PLOT):
# 累積リターンに変更
cum_ret = 100 * (1 + x_train_org.iloc[:, num_index]).cumprod()
cum_ret_decoded = 100 * (1 + decoded_return[:, num_index]).cumprod()
# 比較してプロット
plt.figure()
plt.title(asset_return.iloc[:, num_index].name, fontname="MS Gothic")
plt.plot(x_train.index, cum_ret, label="Original")
plt.plot(x_train.index, cum_ret_decoded, label="After PCA")
plt.legend(loc='upper right')
# plt.show()
plt.savefig("image/PCA_insample_{}.png".format(num_index))
print(calcu_r_squared(x_train_org, decoded_return))
# ---------------------------------------------------------
# PCA:アウトサンプルの比較
# ---------------------------------------------------------
# デコードされたリターン系列を作成
decoded_return = pca.inverse_transform(pca.transform(x_test))
decoded_return = x_scaler.inverse_transform(decoded_return)
for num_index in range(NUM_PLOT):
# 累積リターンに変更
cum_ret = 100 * (1 + x_test_org.iloc[:, num_index]).cumprod()
cum_ret_decoded = 100 * (1 + decoded_return[:, num_index]).cumprod()
# 比較してプロット
plt.figure()
plt.title(asset_return.iloc[:, num_index+1].name, fontname="MS Gothic")
plt.plot(x_test.index, cum_ret, label="Original")
plt.plot(x_test.index, cum_ret_decoded, label="After PCA")
plt.legend(loc='upper right')
# plt.show()
plt.savefig("image/PCA_res_outsample_{}.png".format(num_index))
plt.close()
print(calcu_r_squared(x_test_org, decoded_return))
# ファクター分析用に系列を生成
pca_factors = pca.transform(x_train)
pca_factors = pca_factors.T
# 平均0%・標準偏差年率10%にスケーリング(年間260日基準)
for i in range(NUM_FACTOR):
m = np.mean(pca_factors[i])
sd = np.std(pca_factors[i])
pca_factors[i] = [(f - m) / sd * (0.1 / math.sqrt(260))
for f in pca_factors[i]]
pca_factors = np.array(pca_factors)
for i, factor_val in enumerate(pca_factors):
factor_data["pca_factor_{}".format(i)] = factor_val
# 結果を出力
factor_corr = factor_data.corr()
factor_corr.to_csv("factor_corr.csv", encoding="shift_jis")
# factor_data.to_csv("factor.csv", encoding="shift_jis")