@@ -163,13 +163,13 @@ and pass it to the minimizer:
163
163
n_restarts_optimizer=2, noise='gaussian',
164
164
normalize_y=True, optimizer='fmin_l_bfgs_b',
165
165
random_state=655685735)]
166
- random_state: RandomState(MT19937) at 0x7FC3DFF9FB40
166
+ random_state: RandomState(MT19937) at 0x7F8322CE7B40
167
167
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
168
- specs: {'args': {'func': <function obj_fun at 0x7fc3de066d30 >, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
168
+ specs: {'args': {'func': <function obj_fun at 0x7f8320d43d30 >, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
169
169
kernel=1**2 * Matern(length_scale=1, nu=2.5),
170
170
n_restarts_optimizer=2, noise='gaussian',
171
171
normalize_y=True, optimizer='fmin_l_bfgs_b',
172
- random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7FC3DFF9FB40 , 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7fc3d3810af0 >], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
172
+ random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_state': RandomState(MT19937) at 0x7F8322CE7B40 , 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f831a509100 >], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
173
173
x: [20.0]
174
174
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]]
175
175
@@ -321,14 +321,14 @@ The previous results can then be used to continue the optimization process:
321
321
n_restarts_optimizer=2, noise='gaussian',
322
322
normalize_y=True, optimizer='fmin_l_bfgs_b',
323
323
random_state=655685735)]
324
- random_state: RandomState(MT19937) at 0x7FC3DFF9FB40
324
+ random_state: RandomState(MT19937) at 0x7F8322CE7B40
325
325
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
326
- specs: {'args': {'func': <function obj_fun at 0x7fc3de066d30 >, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
326
+ specs: {'args': {'func': <function obj_fun at 0x7f8320d43d30 >, 'dimensions': Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
327
327
kernel=1**2 * Matern(length_scale=1, nu=2.5),
328
328
n_restarts_optimizer=2, noise='gaussian',
329
329
normalize_y=True, optimizer='fmin_l_bfgs_b',
330
330
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0, 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,
331
- 0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7FC3DFF9FB40 , 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7fc3d3810af0 >], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
331
+ 0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_state': RandomState(MT19937) at 0x7F8322CE7B40 , 'verbose': False, 'callback': [<skopt.callbacks.CheckpointSaver object at 0x7f831a509100 >], 'n_points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size': None}, 'function': 'base_minimize'}
332
332
x: [20.0]
333
333
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0]]
334
334
@@ -350,7 +350,7 @@ for more information on how the results get saved and possible caveats
350
350
351
351
.. rst-class :: sphx-glr-timing
352
352
353
- **Total running time of the script: ** ( 0 minutes 3.889 seconds)
353
+ **Total running time of the script: ** ( 0 minutes 3.680 seconds)
354
354
355
355
**Estimated memory usage: ** 8 MB
356
356
0 commit comments