-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathrelated_projects.html
1001 lines (776 loc) · 42.4 KB
/
related_projects.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="Related Projects" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/related_projects.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which facilitates best practices for testing and documenting estimators. The scikit-lear..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which facilitates best practices for testing and documenting estimators. The scikit-lear..." />
<title>Related Projects — scikit-learn 1.6.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="_static/jupyterlite_sphinx.css?v=e3ca86de" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="_static/styles/custom.css?v=d67e4bb0" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=d6a008b6"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/clipboard.min.js?v=a7894cd8"></script>
<script src="_static/copybutton.js?v=97f0b27d"></script>
<script src="_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'related_projects';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.6.1';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<script src="_static/scripts/dropdown.js?v=e2048168"></script>
<script src="_static/scripts/version-switcher.js?v=a6dd8357"></script>
<script src="_static/scripts/sg_plotly_resize.js?v=eeb41cab"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/related_projects.html" />
<link rel="icon" href="_static/favicon.ico"/>
<link rel="author" title="About these documents" href="about.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Roadmap" href="roadmap.html" />
<link rel="prev" title="Support" href="support.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.6" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="index.html">
<img src="_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<img src="_static/scikit-learn-logo-small.png" class="logo__image only-dark pst-js-only" alt="scikit-learn homepage"/>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="install.html">
Install
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="support.html">
Support
</a>
</li>
<li class=" current active">
<a class="nav-link dropdown-item nav-internal" href="#">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar hide-on-wide">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="install.html">
Install
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="support.html">
Support
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="#">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Related Projects</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="related-projects">
<span id="id1"></span><h1>Related Projects<a class="headerlink" href="#related-projects" title="Link to this heading">#</a></h1>
<p>Projects implementing the scikit-learn estimator API are encouraged to use
the <a class="reference external" href="https://github.com/scikit-learn-contrib/project-template">scikit-learn-contrib template</a>
which facilitates best practices for testing and documenting estimators.
The <a class="reference external" href="https://github.com/scikit-learn-contrib/scikit-learn-contrib">scikit-learn-contrib GitHub organization</a>
also accepts high-quality contributions of repositories conforming to this
template.</p>
<p>Below is a list of sister-projects, extensions and domain specific packages.</p>
<section id="interoperability-and-framework-enhancements">
<h2>Interoperability and framework enhancements<a class="headerlink" href="#interoperability-and-framework-enhancements" title="Link to this heading">#</a></h2>
<p>These tools adapt scikit-learn for use with other technologies or otherwise
enhance the functionality of scikit-learn’s estimators.</p>
<p><strong>Auto-ML</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/automl/auto-sklearn/">auto-sklearn</a>
An automated machine learning toolkit and a drop-in replacement for a
scikit-learn estimator</p></li>
<li><p><a class="reference external" href="https://github.com/AutoViML/Auto_ViML/">autoviml</a>
Automatically Build Multiple Machine Learning Models with a Single Line of Code.
Designed as a faster way to use scikit-learn models without having to preprocess data.</p></li>
<li><p><a class="reference external" href="https://github.com/rhiever/tpot">TPOT</a>
An automated machine learning toolkit that optimizes a series of scikit-learn
operators to design a machine learning pipeline, including data and feature
preprocessors as well as the estimators. Works as a drop-in replacement for a
scikit-learn estimator.</p></li>
<li><p><a class="reference external" href="https://github.com/alteryx/featuretools">Featuretools</a>
A framework to perform automated feature engineering. It can be used for
transforming temporal and relational datasets into feature matrices for
machine learning.</p></li>
<li><p><a class="reference external" href="https://github.com/alteryx/evalml">EvalML</a>
EvalML is an AutoML library which builds, optimizes, and evaluates
machine learning pipelines using domain-specific objective functions.
It incorporates multiple modeling libraries under one API, and
the objects that EvalML creates use an sklearn-compatible API.</p></li>
<li><p><a class="reference external" href="https://github.com/mljar/mljar-supervised">MLJAR AutoML</a>
Python package for AutoML on Tabular Data with Feature Engineering,
Hyper-Parameters Tuning, Explanations and Automatic Documentation.</p></li>
</ul>
<p><strong>Experimentation and model registry frameworks</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://mlflow.org/">MLFlow</a> MLflow is an open source platform to manage the ML
lifecycle, including experimentation, reproducibility, deployment, and a central
model registry.</p></li>
<li><p><a class="reference external" href="https://neptune.ai/">Neptune</a> Metadata store for MLOps,
built for teams that run a lot of experiments. It gives you a single
place to log, store, display, organize, compare, and query all your
model building metadata.</p></li>
<li><p><a class="reference external" href="https://github.com/IDSIA/Sacred">Sacred</a> Tool to help you configure,
organize, log and reproduce experiments</p></li>
<li><p><a class="reference external" href="https://skll.readthedocs.io/en/latest/index.html">Scikit-Learn Laboratory</a> A command-line
wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.</p></li>
</ul>
<p><strong>Model inspection and visualization</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/parrt/dtreeviz/">dtreeviz</a> A python library for
decision tree visualization and model interpretation.</p></li>
<li><p><a class="reference external" href="https://github.com/ploomber/sklearn-evaluation">sklearn-evaluation</a>
Machine learning model evaluation made easy: plots, tables, HTML reports,
experiment tracking and Jupyter notebook analysis. Visual analysis, model
selection, evaluation and diagnostics.</p></li>
<li><p><a class="reference external" href="https://github.com/DistrictDataLabs/yellowbrick">yellowbrick</a> A suite of
custom matplotlib visualizers for scikit-learn estimators to support visual feature
analysis, model selection, evaluation, and diagnostics.</p></li>
</ul>
<p><strong>Model export for production</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/onnx/sklearn-onnx">sklearn-onnx</a> Serialization of many
Scikit-learn pipelines to <a class="reference external" href="https://onnx.ai/">ONNX</a> for interchange and
prediction.</p></li>
<li><p><a class="reference external" href="https://skops.readthedocs.io/en/stable/persistence.html">skops.io</a> A
persistence model more secure than pickle, which can be used instead of
pickle in most common cases.</p></li>
<li><p><a class="reference external" href="https://github.com/jpmml/sklearn2pmml">sklearn2pmml</a>
Serialization of a wide variety of scikit-learn estimators and transformers
into PMML with the help of <a class="reference external" href="https://github.com/jpmml/jpmml-sklearn">JPMML-SkLearn</a>
library.</p></li>
<li><p><a class="reference external" href="https://treelite.readthedocs.io">treelite</a>
Compiles tree-based ensemble models into C code for minimizing prediction
latency.</p></li>
<li><p><a class="reference external" href="https://emlearn.org">emlearn</a>
Implements scikit-learn estimators in C99 for embedded devices and microcontrollers.
Supports several classifier, regression and outlier detection models.</p></li>
</ul>
<p><strong>Model throughput</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/intel/scikit-learn-intelex">Intel(R) Extension for scikit-learn</a>
Mostly on high end Intel(R) hardware, accelerates some scikit-learn models
for both training and inference under certain circumstances. This project is
maintained by Intel(R) and scikit-learn’s maintainers are not involved in the
development of this project. Also note that in some cases using the tools and
estimators under <code class="docutils literal notranslate"><span class="pre">scikit-learn-intelex</span></code> would give different results than
<code class="docutils literal notranslate"><span class="pre">scikit-learn</span></code> itself. If you encounter issues while using this project,
make sure you report potential issues in their respective repositories.</p></li>
</ul>
<p><strong>Interface to R with genomic applications</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://bioconductor.org/packages/BiocSklearn">BiocSklearn</a>
Exposes a small number of dimension reduction facilities as an illustration
of the basilisk protocol for interfacing python with R. Intended as a
springboard for more complete interop.</p></li>
</ul>
</section>
<section id="other-estimators-and-tasks">
<h2>Other estimators and tasks<a class="headerlink" href="#other-estimators-and-tasks" title="Link to this heading">#</a></h2>
<p>Not everything belongs or is mature enough for the central scikit-learn
project. The following are projects providing interfaces similar to
scikit-learn for additional learning algorithms, infrastructures
and tasks.</p>
<p><strong>Time series and forecasting</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://unit8co.github.io/darts/">Darts</a> Darts is a Python library for
user-friendly forecasting and anomaly detection on time series. It contains a variety
of models, from classics such as ARIMA to deep neural networks. The forecasting
models can all be used in the same way, using fit() and predict() functions, similar
to scikit-learn.</p></li>
<li><p><a class="reference external" href="https://github.com/alan-turing-institute/sktime">sktime</a> A scikit-learn compatible
toolbox for machine learning with time series including time series
classification/regression and (supervised/panel) forecasting.</p></li>
<li><p><a class="reference external" href="https://github.com/JoaquinAmatRodrigo/skforecast">skforecast</a> A python library
that eases using scikit-learn regressors as multi-step forecasters. It also works
with any regressor compatible with the scikit-learn API.</p></li>
<li><p><a class="reference external" href="https://github.com/tslearn-team/tslearn">tslearn</a> A machine learning library for
time series that offers tools for pre-processing and feature extraction as well as
dedicated models for clustering, classification and regression.</p></li>
</ul>
<p><strong>Gradient (tree) boosting</strong></p>
<p>Note scikit-learn own modern gradient boosting estimators
<a class="reference internal" href="modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier" title="sklearn.ensemble.HistGradientBoostingClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingClassifier</span></code></a> and
<a class="reference internal" href="modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor" title="sklearn.ensemble.HistGradientBoostingRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingRegressor</span></code></a>.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/dmlc/xgboost">XGBoost</a> XGBoost is an optimized distributed
gradient boosting library designed to be highly efficient, flexible and portable.</p></li>
<li><p><a class="reference external" href="https://lightgbm.readthedocs.io">LightGBM</a> LightGBM is a gradient boosting
framework that uses tree based learning algorithms. It is designed to be distributed
and efficient.</p></li>
</ul>
<p><strong>Structured learning</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/hmmlearn/hmmlearn">HMMLearn</a> Implementation of hidden
markov models that was previously part of scikit-learn.</p></li>
<li><p><a class="reference external" href="https://github.com/jmschrei/pomegranate">pomegranate</a> Probabilistic modelling
for Python, with an emphasis on hidden Markov models.</p></li>
</ul>
<p><strong>Deep neural networks etc.</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/dnouri/skorch">skorch</a> A scikit-learn compatible
neural network library that wraps PyTorch.</p></li>
<li><p><a class="reference external" href="https://github.com/adriangb/scikeras">scikeras</a> provides a wrapper around
Keras to interface it with scikit-learn. SciKeras is the successor
of <code class="docutils literal notranslate"><span class="pre">tf.keras.wrappers.scikit_learn</span></code>.</p></li>
</ul>
<p><strong>Federated Learning</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://flower.dev/">Flower</a> A friendly federated learning framework with a
unified approach that can federate any workload, any ML framework, and any programming language.</p></li>
</ul>
<p><strong>Privacy Preserving Machine Learning</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/zama-ai/concrete-ml/">Concrete ML</a> A privacy preserving
ML framework built on top of <a class="reference external" href="https://github.com/zama-ai/concrete">Concrete</a>, with bindings to traditional ML
frameworks, thanks to fully homomorphic encryption. APIs of so-called
Concrete ML built-in models are very close to scikit-learn APIs.</p></li>
</ul>
<p><strong>Broad scope</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/rasbt/mlxtend">mlxtend</a> Includes a number of additional
estimators as well as model visualization utilities.</p></li>
<li><p><a class="reference external" href="https://github.com/koaning/scikit-lego">scikit-lego</a> A number of scikit-learn compatible
custom transformers, models and metrics, focusing on solving practical industry tasks.</p></li>
</ul>
<p><strong>Other regression and classification</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/py-earth">py-earth</a> Multivariate
adaptive regression splines</p></li>
<li><p><a class="reference external" href="https://github.com/trevorstephens/gplearn">gplearn</a> Genetic Programming
for symbolic regression tasks.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-multilearn/scikit-multilearn">scikit-multilearn</a>
Multi-label classification with focus on label space manipulation.</p></li>
</ul>
<p><strong>Decomposition and clustering</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/lda-project/lda/">lda</a>: Fast implementation of latent
Dirichlet allocation in Cython which uses <a class="reference external" href="https://en.wikipedia.org/wiki/Gibbs_sampling">Gibbs sampling</a> to sample from the true
posterior distribution. (scikit-learn’s
<a class="reference internal" href="modules/generated/sklearn.decomposition.LatentDirichletAllocation.html#sklearn.decomposition.LatentDirichletAllocation" title="sklearn.decomposition.LatentDirichletAllocation"><code class="xref py py-class docutils literal notranslate"><span class="pre">LatentDirichletAllocation</span></code></a> implementation uses
<a class="reference external" href="https://en.wikipedia.org/wiki/Variational_Bayesian_methods">variational inference</a> to sample from
a tractable approximation of a topic model’s posterior distribution.)</p></li>
<li><p><a class="reference external" href="https://github.com/nicodv/kmodes">kmodes</a> k-modes clustering algorithm for
categorical data, and several of its variations.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/hdbscan">hdbscan</a> HDBSCAN and Robust Single
Linkage clustering algorithms for robust variable density clustering.
As of scikit-learn version 1.3.0, there is <a class="reference internal" href="modules/generated/sklearn.cluster.HDBSCAN.html#sklearn.cluster.HDBSCAN" title="sklearn.cluster.HDBSCAN"><code class="xref py py-class docutils literal notranslate"><span class="pre">HDBSCAN</span></code></a>.</p></li>
</ul>
<p><strong>Pre-processing</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/categorical-encoding">categorical-encoding</a> A
library of sklearn compatible categorical variable encoders.
As of scikit-learn version 1.3.0, there is
<a class="reference internal" href="modules/generated/sklearn.preprocessing.TargetEncoder.html#sklearn.preprocessing.TargetEncoder" title="sklearn.preprocessing.TargetEncoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">TargetEncoder</span></code></a>.</p></li>
<li><p><a class="reference external" href="https://github.com/scikit-learn-contrib/imbalanced-learn">imbalanced-learn</a> Various
methods to under- and over-sample datasets.</p></li>
<li><p><a class="reference external" href="https://github.com/solegalli/feature_engine">Feature-engine</a> A library
of sklearn compatible transformers for missing data imputation, categorical
encoding, variable transformation, discretization, outlier handling and more.
Feature-engine allows the application of preprocessing steps to selected groups
of variables and it is fully compatible with the Scikit-learn Pipeline.</p></li>
</ul>
<p><strong>Topological Data Analysis</strong></p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/giotto-ai/giotto-tda">giotto-tda</a> A library for
<a class="reference external" href="https://en.wikipedia.org/wiki/Topological_data_analysis">Topological Data Analysis</a> aiming to
provide a scikit-learn compatible API. It offers tools to transform data
inputs (point clouds, graphs, time series, images) into forms suitable for
computations of topological summaries, and components dedicated to
extracting sets of scalar features of topological origin, which can be used
alongside other feature extraction methods in scikit-learn.</p></li>
</ul>
</section>
<section id="statistical-learning-with-python">
<h2>Statistical learning with Python<a class="headerlink" href="#statistical-learning-with-python" title="Link to this heading">#</a></h2>
<p>Other packages useful for data analysis and machine learning.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://pandas.pydata.org/">Pandas</a> Tools for working with heterogeneous and
columnar data, relational queries, time series and basic statistics.</p></li>
<li><p><a class="reference external" href="https://www.statsmodels.org">statsmodels</a> Estimating and analysing
statistical models. More focused on statistical tests and less on prediction
than scikit-learn.</p></li>
<li><p><a class="reference external" href="https://www.pymc.io/">PyMC</a> Bayesian statistical models and
fitting algorithms.</p></li>
<li><p><a class="reference external" href="https://stanford.edu/~mwaskom/software/seaborn/">Seaborn</a> Visualization library based on
matplotlib. It provides a high-level interface for drawing attractive statistical graphics.</p></li>
<li><p><a class="reference external" href="https://scikit-survival.readthedocs.io/">scikit-survival</a> A library implementing
models to learn from censored time-to-event data (also called survival analysis).
Models are fully compatible with scikit-learn.</p></li>
</ul>
<section id="recommendation-engine-packages">
<h3>Recommendation Engine packages<a class="headerlink" href="#recommendation-engine-packages" title="Link to this heading">#</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/benfred/implicit">implicit</a>, Library for implicit
feedback datasets.</p></li>
<li><p><a class="reference external" href="https://github.com/lyst/lightfm">lightfm</a> A Python/Cython
implementation of a hybrid recommender system.</p></li>
<li><p><a class="reference external" href="https://surpriselib.com/">Surprise Lib</a> Library for explicit feedback
datasets.</p></li>
</ul>
</section>
<section id="domain-specific-packages">
<h3>Domain specific packages<a class="headerlink" href="#domain-specific-packages" title="Link to this heading">#</a></h3>
<ul class="simple">
<li><p><a class="reference external" href="https://scikit-network.readthedocs.io/">scikit-network</a> Machine learning on graphs.</p></li>
<li><p><a class="reference external" href="https://scikit-image.org/">scikit-image</a> Image processing and computer
vision in python.</p></li>
<li><p><a class="reference external" href="https://www.nltk.org/">Natural language toolkit (nltk)</a> Natural language
processing and some machine learning.</p></li>
<li><p><a class="reference external" href="https://radimrehurek.com/gensim/">gensim</a> A library for topic modelling,
document indexing and similarity retrieval</p></li>
<li><p><a class="reference external" href="https://nilearn.github.io/">NiLearn</a> Machine learning for neuro-imaging.</p></li>
<li><p><a class="reference external" href="https://www.astroml.org/">AstroML</a> Machine learning for astronomy.</p></li>
</ul>
</section>
</section>
<section id="translations-of-scikit-learn-documentation">
<h2>Translations of scikit-learn documentation<a class="headerlink" href="#translations-of-scikit-learn-documentation" title="Link to this heading">#</a></h2>
<p>Translation’s purpose is to ease reading and understanding in languages
other than English. Its aim is to help people who do not understand English
or have doubts about its interpretation. Additionally, some people prefer
to read documentation in their native language, but please bear in mind that
the only official documentation is the English one <a class="footnote-reference brackets" href="#f1" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>.</p>
<p>Those translation efforts are community initiatives and we have no control
on them.
If you want to contribute or report an issue with the translation, please
contact the authors of the translation.
Some available translations are linked here to improve their dissemination
and promote community efforts.</p>
<ul class="simple">
<li><p><a class="reference external" href="https://sklearn.apachecn.org/">Chinese translation</a>
(<a class="reference external" href="https://github.com/apachecn/sklearn-doc-zh">source</a>)</p></li>
<li><p><a class="reference external" href="https://sklearn.ir/">Persian translation</a>
(<a class="reference external" href="https://github.com/mehrdad-dev/scikit-learn">source</a>)</p></li>
<li><p><a class="reference external" href="https://qu4nt.github.io/sklearn-doc-es/">Spanish translation</a>
(<a class="reference external" href="https://github.com/qu4nt/sklearn-doc-es">source</a>)</p></li>
<li><p><a class="reference external" href="https://panda5176.github.io/scikit-learn-korean/">Korean translation</a>
(<a class="reference external" href="https://github.com/panda5176/scikit-learn-korean">source</a>)</p></li>
</ul>
<p class="rubric">Footnotes</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="f1" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">1</a><span class="fn-bracket">]</span></span>
<p>following <a class="reference external" href="https://www.kernel.org/doc/html/latest/translations/index.html#disclaimer">linux documentation Disclaimer</a></p>
</aside>
</aside>
</section>
</section>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item">
<div class="prev-next-area">
<a class="left-prev"
href="support.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Support</p>
</div>
</a>
<a class="right-next"
href="roadmap.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Roadmap</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div></div>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#interoperability-and-framework-enhancements">Interoperability and framework enhancements</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#other-estimators-and-tasks">Other estimators and tasks</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#statistical-learning-with-python">Statistical learning with Python</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#recommendation-engine-packages">Recommendation Engine packages</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#domain-specific-packages">Domain specific packages</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#translations-of-scikit-learn-documentation">Translations of scikit-learn documentation</a></li>
</ul>
</nav></div>
<div class="sidebar-secondary-item">
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/related_projects.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2007 - 2025, scikit-learn developers (BSD License).
<br/>
</p>
</div>
</div>
</div>
</footer>
</body>