-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbench_svm.py
201 lines (161 loc) · 5.59 KB
/
bench_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""SVM benchmarks"""
import numpy as np
from datetime import datetime
def bench_shogun(X, y, T, valid):
#
# .. Shogun ..
#
from shogun.Classifier import LibSVM
from shogun.Features import RealFeatures, Labels
from shogun.Kernel import GaussianKernel
start = datetime.now()
feat = RealFeatures(X.T)
feat_test = RealFeatures(T.T)
labels = Labels(y.astype(np.float64))
kernel = GaussianKernel(feat, feat, sigma)
shogun_svm = LibSVM(1., kernel, labels)
shogun_svm.train()
dec_func = shogun_svm.classify(feat_test).get_labels()
score = np.mean(np.sign(dec_func) == valid)
return score, datetime.now() - start
def bench_mlpy(X, y, T, valid):
#
# .. MLPy ..
#
from mlpy import LibSvm
start = datetime.now()
clf = LibSvm(kernel_type='rbf', C=1., gamma=1. / sigma)
clf.learn(X, y.astype(np.float64))
score = np.mean(clf.pred(T) == valid)
return score, datetime.now() - start
def bench_skl(X, y, T, valid):
#
# .. scikits.learn ..
#
from scikits.learn import svm as skl_svm
start = datetime.now()
clf = skl_svm.SVC(kernel='rbf', C=1., gamma=1. / sigma)
clf.fit(X, y)
score = np.mean(clf.predict(T) == valid)
return score, datetime.now() - start
def bench_pymvpa(X, y, T, valid):
#
# .. PyMVPA ..
#
from mvpa.clfs import svm
from mvpa.datasets import dataset_wizard
tstart = datetime.now()
data = dataset_wizard(X, y)
kernel = svm.RbfSVMKernel(gamma=1. / sigma)
clf = svm.SVM(C=1., kernel=kernel)
clf.train(data)
score = np.mean(clf.predict(T) == valid)
return score, datetime.now() - tstart
def bench_pybrain(X, y, T, valid):
#
# .. PyBrain ..
#
# local import, they require libsvm < 2.81
from pybrain.supervised.trainers.svmtrainer import SVMTrainer
from pybrain.structure.modules.svmunit import SVMUnit
from pybrain.datasets import SupervisedDataSet
tstart = datetime.now()
ds = SupervisedDataSet(X.shape[1], 1)
for i in range(X.shape[0]):
ds.addSample(X[i], y[i])
clf = SVMTrainer(SVMUnit(), ds)
clf.train()
pred = np.empty(T.shape[0], dtype=np.int32)
for i in range(T.shape[0]):
pred[i] = clf.svm.model.predict(T[i])
score = np.mean(pred == valid)
return score, datetime.now() - tstart
def bench_mdp(X, y, T, valid):
#
# .. MDP ..
#
from mdp.nodes import LibSVMClassifier
start = datetime.now()
clf = LibSVMClassifier(kernel='RBF')
clf.parameter.gamma = 1. / sigma
clf.train(X, y)
score = np.mean(clf.label(T) == valid)
return score, datetime.now() - start
def bench_milk(X, y, T, valid):
#
# .. milk ..
#
from milk.supervised import svm
start = datetime.now()
learner = svm.svm_raw(
kernel=svm.rbf_kernel(sigma=sigma), C=1.)
model = learner.train(X, y)
pred = np.sign(map(model.apply, T))
score = np.mean(pred == valid)
return score, datetime.now() - start
def bench_orange(X, y, T, valid):
#
# .. Orange ..
#
import orange
start = datetime.now()
# prepare data in Orange's format
columns = []
for i in range(0, X.shape[1]):
columns.append("a" + str(i))
[orange.EnumVariable(x) for x in columns]
classValues = ['0', '1']
domain = orange.Domain(map(orange.FloatVariable, columns),
orange.EnumVariable("class", values=classValues))
y.shape = (len(y), 1) #reshape for Orange
y[np.where(y < 0)] = 0 # change class labels to 0..K
orng_train_data = orange.ExampleTable(domain, np.hstack((X, y)))
valid.shape = (len(valid), 1) #reshape for Orange
valid[np.where(valid < 0)] = 0 # change class labels to 0..K
orng_test_data = orange.ExampleTable(domain, np.hstack((T, valid)))
learner = orange.SVMLearner(orng_train_data, \
svm_type=orange.SVMLearner.Nu_SVC, \
kernel_type=orange.SVMLearner.RBF, C=1., \
gamma=1. / sigma)
pred = np.empty(T.shape[0], dtype=np.int32)
for i, e in enumerate(orng_test_data):
pred[i] = learner(e)
score = np.mean(pred == valid)
return score, datetime.now() - start
if __name__ == '__main__':
import sys
import misc
# don't bother me with warnings
import warnings
warnings.simplefilter('ignore')
np.seterr(all='ignore')
print __doc__ + '\n'
if not len(sys.argv) == 2:
print misc.USAGE % __file__
sys.exit(-1)
else:
dataset = sys.argv[1]
print 'Loading data ...'
data = misc.load_data(dataset)
# set sigma to something useful
from milk.unsupervised import pdist
sigma = np.median(pdist(data[0]))
print 'Done, %s samples with %s features loaded into ' \
'memory\n' % data[0].shape
score, res = misc.bench(bench_shogun, data)
misc.print_result("svm", dataset, "Shogun", score, res)
score, res = misc.bench(bench_mdp, data)
misc.print_result("svm", dataset, "MDP", score, res)
score, res = misc.bench(bench_skl, data)
misc.print_result("svm", dataset, "scikits.learn", score, res)
score, res = misc.bench(bench_mlpy, data)
misc.print_result("svm", dataset, "MLPy", score, res)
score, res = misc.bench(bench_pymvpa, data)
misc.print_result("svm", dataset, "PyMVPA", score, res)
score, res = misc.bench(bench_pybrain, data)
misc.print_result("svm", dataset, "Pybrain", score, res)
score, res = misc.bench(bench_milk, data)
misc.print_result("svm", dataset, "milk", score, res)
score, res = misc.bench(bench_orange, data)
misc.print_result("svm", dataset, "Orange", score, res)
misc.save_results()