-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathbench_lassolars.py
80 lines (63 loc) · 1.97 KB
/
bench_lassolars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""bench different LARS implementations"""
import numpy as np
from datetime import datetime
def bench_skl(X, y, T, valid):
#
# .. scikits.learn ..
#
from scikits.learn import linear_model
start = datetime.now()
skl_clf = linear_model.LassoLARS(alpha=0.)
skl_clf.fit(X, y, normalize=False)
pred = skl_clf.predict(T)
delta = datetime.now() - start
mse = np.linalg.norm(pred - valid, 2)**2
return mse, delta
def bench_mlpy(X, y, T, valid):
#
# .. MLPy ..
#
from mlpy import Lasso
start = datetime.now()
mlpy_clf = Lasso(m=10 * X.shape[1]) # go till the end of the path
mlpy_clf.learn(X, y)
pred = mlpy_clf.pred(T)
delta = datetime.now() - start
mse = np.linalg.norm(pred - valid, 2)**2
return mse, delta
def bench_pymvpa(X, y, T, valid):
#
# .. PyMVPA ..
#
from mvpa.datasets import dataset_wizard
from mvpa.clfs import lars
start = datetime.now()
data = dataset_wizard(X, y)
clf = lars.LARS(model_type="lasso")
clf.train(data)
pred = clf.predict(T)
delta = datetime.now() - start
mse = np.linalg.norm(pred - valid, 2) ** 2
return mse, delta
if __name__ == '__main__':
import sys, misc
# don't bother me with warnings
import warnings; warnings.simplefilter('ignore')
np.seterr(all='ignore')
print __doc__ + '\n'
if not len(sys.argv) == 2:
print misc.USAGE % __file__
sys.exit(-1)
else:
dataset = sys.argv[1]
print 'Loading data ...'
data = misc.load_data(dataset)
print 'Done, %s samples with %s features loaded into ' \
'memory\n' % data[0].shape
score, res = misc.bench(bench_skl, data)
misc.print_result("lassolars", dataset, "scikits.learn", score, res)
score, res = misc.bench(bench_mlpy, data)
misc.print_result("lassolars", dataset, "MLPy", score, res)
score, res = misc.bench(bench_pymvpa, data)
misc.print_result("lassolars", dataset, "PyMVPA", score, res)
misc.save_results()