@@ -91,8 +91,8 @@ def _make_geometric_sample(
91
91
class GeometricSMOTE (BaseOverSampler ):
92
92
"""Class to to perform over-sampling using Geometric SMOTE.
93
93
94
- This algorithm is an implementation of Geometric SMOTE, a geometrically
95
- enhanced drop-in replacement for SMOTE as presented in [1]_.
94
+ This algorithm is an implementation of Geometric SMOTE, a geometrically enhanced
95
+ drop-in replacement for SMOTE as presented in [1]_.
96
96
97
97
Read more in the :ref:`User Guide <user_guide>`.
98
98
@@ -123,7 +123,6 @@ class GeometricSMOTE(BaseOverSampler):
123
123
124
124
Attributes
125
125
----------
126
-
127
126
sampling_strategy_ : dict
128
127
Dictionary containing the information to sample the dataset. The keys
129
128
corresponds to the class labels from which to sample and the values
@@ -148,6 +147,24 @@ class GeometricSMOTE(BaseOverSampler):
148
147
seed. If `random_state` is already a RandomState instance, it is the same
149
148
object.
150
149
150
+ See Also
151
+ --------
152
+ SMOTE : Over-sample using SMOTE.
153
+
154
+ SMOTEN : Over-sample using the SMOTE variant specifically for categorical
155
+ features only.
156
+
157
+ SMOTENC : Over-sample using SMOTE for continuous and categorical features.
158
+
159
+ SVMSMOTE : Over-sample using SVM-SMOTE variant.
160
+
161
+ BorderlineSMOTE : Over-sample using Borderline-SMOTE variant.
162
+
163
+ ADASYN : Over-sample using ADASYN.
164
+
165
+ KMeansSMOTE : Over-sample applying a clustering before to oversample using
166
+ SMOTE.
167
+
151
168
Notes
152
169
-----
153
170
See the original paper: [1]_ for more details.
@@ -157,7 +174,6 @@ class GeometricSMOTE(BaseOverSampler):
157
174
158
175
References
159
176
----------
160
-
161
177
.. [1] G. Douzas, F. Bacao, "Geometric SMOTE:
162
178
a geometrically enhanced drop-in replacement for SMOTE",
163
179
Information Sciences, vol. 501, pp. 118-135, 2019.
@@ -168,7 +184,6 @@ class GeometricSMOTE(BaseOverSampler):
168
184
169
185
Examples
170
186
--------
171
-
172
187
>>> from collections import Counter
173
188
>>> from sklearn.datasets import make_classification
174
189
>>> from imblearn.over_sampling import \
@@ -182,7 +197,6 @@ class GeometricSMOTE(BaseOverSampler):
182
197
>>> X_res, y_res = gsmote.fit_resample(X, y)
183
198
>>> print('Resampled dataset shape %s' % Counter(y_res))
184
199
Resampled dataset shape Counter({{0: 900, 1: 900}})
185
-
186
200
"""
187
201
188
202
def __init__ (
0 commit comments