@@ -91,8 +91,8 @@ def _make_geometric_sample(
91
91
class GeometricSMOTE (BaseOverSampler ):
92
92
"""Class to to perform over-sampling using Geometric SMOTE.
93
93
94
- This algorithm is an implementation of Geometric SMOTE, a geometrically
95
- enhanced drop-in replacement for SMOTE as presented in [1]_.
94
+ This algorithm is an implementation of Geometric SMOTE, a geometrically enhanced
95
+ drop-in replacement for SMOTE as presented in [1]_.
96
96
97
97
Read more in the :ref:`User Guide <user_guide>`.
98
98
@@ -123,7 +123,6 @@ class GeometricSMOTE(BaseOverSampler):
123
123
124
124
Attributes
125
125
----------
126
-
127
126
sampling_strategy_ : dict
128
127
Dictionary containing the information to sample the dataset. The keys
129
128
corresponds to the class labels from which to sample and the values
@@ -157,7 +156,6 @@ class GeometricSMOTE(BaseOverSampler):
157
156
158
157
References
159
158
----------
160
-
161
159
.. [1] G. Douzas, F. Bacao, "Geometric SMOTE:
162
160
a geometrically enhanced drop-in replacement for SMOTE",
163
161
Information Sciences, vol. 501, pp. 118-135, 2019.
@@ -168,7 +166,6 @@ class GeometricSMOTE(BaseOverSampler):
168
166
169
167
Examples
170
168
--------
171
-
172
169
>>> from collections import Counter
173
170
>>> from sklearn.datasets import make_classification
174
171
>>> from imblearn.over_sampling import \
@@ -182,7 +179,6 @@ class GeometricSMOTE(BaseOverSampler):
182
179
>>> X_res, y_res = gsmote.fit_resample(X, y)
183
180
>>> print('Resampled dataset shape %s' % Counter(y_res))
184
181
Resampled dataset shape Counter({{0: 900, 1: 900}})
185
-
186
182
"""
187
183
188
184
def __init__ (
0 commit comments