24
24
import scipy
25
25
from lightgbm import LGBMRegressor
26
26
from matplotlib import pyplot as plt
27
- from sklearn .model_selection import train_test_split
28
27
from sklearn .neural_network import MLPRegressor
29
28
30
29
from mapie ._typing import NDArray
31
30
from mapie .metrics import regression_coverage_score
32
31
from mapie_v1 .regression import SplitConformalRegressor , ConformalizedQuantileRegressor
32
+ from mapie_v1 .utils import train_conformalize_test_split
33
33
34
34
warnings .filterwarnings ("ignore" )
35
35
@@ -56,13 +56,13 @@ def f(x: NDArray) -> NDArray:
56
56
X = np .linspace (0 , 1 , n_samples )
57
57
y = f (X ) + rng .normal (0 , sigma , n_samples )
58
58
59
- # Train/validation /test split
60
- X_train_conformalize , X_test , y_train_conformalize , y_test = train_test_split (
61
- X , y , test_size = 1 / 10 , random_state = RANDOM_STATE
62
- )
63
- X_train , X_conformalize , y_train , y_conformalize = train_test_split (
64
- X_train_conformalize , y_train_conformalize ,
65
- test_size = 1 / 9 , random_state = RANDOM_STATE
59
+ # Train/conformalize /test split
60
+ (
61
+ X_train , X_conformalize , X_test , y_train , y_conformalize , y_test
62
+ ) = train_conformalize_test_split (
63
+ X , y ,
64
+ train_size = 0.8 , conformalize_size = 0.1 , test_size = 0.1 ,
65
+ random_state = RANDOM_STATE
66
66
)
67
67
68
68
0 commit comments