Skip to content

Commit 7cc0efa

Browse files
DOC: Migrate every regression examples and notebooks to v1. (#624)
* Migrate homoscedastic, heteroscedastic and gamma examples * Migrate plot_coverage_validity.py * Migrate plot_barber2020_simulations.py * Migrate plot_kim2020_simulations.py * Migrate plot_conformal_predictive_distribution.py * Migrate plot_cqr_symmetry_difference.py * Migrate plot_nested-cv.py to v1 * Migrate plot_both_uncertainties.py to v1 * Migrate plot-coverage-width-based-criterion.py to v1 * Migrate plot_conditional_coverage.py to v1 * Migrate plot_ResidualNormalisedScore_tutorial.py to v1 * Migrate plot_cqr_tutorial.py to v1 * Migrate two exoplanets.ipynb and tutorial_regression.ipynb to v1 * Few edits from code review * Delete mentions to 'pre-v1' * Fix lint * Migrate plot_main-tutorial-regression.py to v1 * Change titles and arborescence of regression examples * Delete optimize_beta parameter from examples as it does not work. * Restore subtitles on plot_prefit. The gestion of the subtitles is on another ticket. * Make lint * Fix typo and links * Fix bullet point lists. * Delete v1 mention on the regression examples README.rst --------- Co-authored-by: Valentin Laurent <[email protected]>
1 parent 9a8bbc4 commit 7cc0efa

31 files changed

+1935
-1711
lines changed

doc/choosing_the_right_algorithm_regression.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
############################################
2-
Choosing the right algorithm
2+
Choose the right algorithm
33
############################################
44

55
Following is a simple decision tree to help you you getting started quickly with MAPIE.

doc/index_regression.rst

+1
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@ Prediction intervals (regression)
66

77
choosing_the_right_algorithm_regression
88
examples_regression/1-quickstart/plot_toy_model
9+
examples_regression/1-quickstart/plot_prefit
910
examples_regression/index
1011
theoretical_description_regression
1112
theoretical_description_conformity_scores
+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
.. _regression_examples_1:
22

3-
1. Quickstart examples
3+
1. Quickstart
44
----------------------
55

66
The following examples present the main functionalities of MAPIE through basic quickstart regression problems.

examples/regression/1-quickstart/plot_compare_conformity_scores.py

+33-35
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,10 @@
11
"""
22
==========================================================================================
3-
[Pre-v1] Estimating prediction intervals of Gamma distributed target
3+
Use MAPIE on data with gamma distribution
44
==========================================================================================
5-
**Note: we recently released MAPIE v1.0.0, which introduces breaking API changes.**
6-
**This notebook hasn't been updated to the new API yet.**
75
8-
This example uses :class:`~mapie.regression.MapieRegressor` to estimate
6+
7+
This example uses :class:`~mapie_v1.regression.CrossConformalRegressor` to estimate
98
prediction intervals associated with Gamma distributed target.
109
The limit of the absolute residual conformity score is illustrated.
1110
@@ -17,10 +16,10 @@
1716
The data is modelled by a Random Forest model
1817
:class:`~sklearn.ensemble.RandomForestRegressor` with a fixed parameter set.
1918
The prediction intervals are determined by means of the MAPIE regressor
20-
:class:`~mapie.regression.MapieRegressor` considering two conformity scores:
21-
:class:`~mapie.conformity_scores.AbsoluteConformityScore` which
19+
:class:`~mapie_v1.regression.CrossConformalRegressor` considering two conformity scores:
20+
``"absolute"`` which
2221
considers the absolute residuals as the conformity scores and
23-
:class:`~mapie.conformity_scores.GammaConformityScore` which
22+
``"gamma"`` which
2423
considers the residuals divided by the predicted means as conformity scores.
2524
We consider the standard CV+ resampling method.
2625
@@ -31,7 +30,7 @@
3130
overcomes this issue by considering prediction intervals with width
3231
proportional to the predicted mean. For low prices, the Gamma prediction
3332
intervals are narrower than the default ones, conversely to high prices
34-
for which the conficence intervals are higher but visually more relevant.
33+
for which the confidence intervals are higher but visually more relevant.
3534
The empirical coverage is similar between the two conformity scores.
3635
"""
3736
import matplotlib.pyplot as plt
@@ -43,11 +42,10 @@
4342
from sklearn.ensemble import RandomForestRegressor
4443
from sklearn.model_selection import train_test_split
4544

46-
from mapie.conformity_scores import GammaConformityScore
4745
from mapie.metrics import regression_coverage_score
48-
from mapie.regression import MapieRegressor
46+
from mapie_v1.regression import CrossConformalRegressor
4947

50-
random_state = 42
48+
RANDOM_STATE = 42
5149

5250
# Parameters
5351
features = [
@@ -59,8 +57,8 @@
5957
]
6058
target = "SalePrice"
6159

62-
alpha = 0.05
63-
rf_kwargs = {"n_estimators": 10, "random_state": random_state}
60+
confidence_level = 0.95
61+
rf_kwargs = {"n_estimators": 10, "random_state": RANDOM_STATE}
6462
model = RandomForestRegressor(**rf_kwargs)
6563

6664
##############################################################################
@@ -69,8 +67,6 @@
6967
#
7068
# We start by loading a dataset with a target following approximately
7169
# a Gamma distribution.
72-
# The :class:`~mapie.conformity_scores.GammaConformityScore`` is relevant
73-
# in such cases.
7470
# Two sub datasets are extracted: the training and test ones.
7571

7672
dataset_url = (
@@ -85,8 +81,8 @@
8581
X = data[features]
8682
y = data[target]
8783

88-
X_train, X_test, y_train, y_test = train_test_split(
89-
X[features], y, test_size=0.2, random_state=random_state
84+
X_train_conformalize, X_test, y_train_conformalize, y_test = train_test_split(
85+
X[features], y, test_size=0.2, random_state=RANDOM_STATE
9086
)
9187

9288
##############################################################################
@@ -95,22 +91,24 @@
9591
#
9692
# Two models are trained with two different conformity score:
9793
#
98-
# - :class:`~mapie.conformity_scores.AbsoluteConformityScore` (default
99-
# conformity score) relevant for target positive as well as negative.
94+
# - ``conformity_score = "absolute"`` (default
95+
# conformity score) is relevant for target positive as well as negative.
10096
# The prediction interval widths are, in this case, approximately the same
10197
# over the range of prediction.
10298
#
103-
# - :class:`~mapie.conformity_scores.GammaConformityScore` relevant for target
99+
# - ``conformity_score = "gamma"`` is relevant for target
104100
# following roughly a Gamma distribution. The prediction interval widths
105101
# scale with the predicted value.
106102

107103
##############################################################################
108104
# First, train model with
109-
# :class:`~mapie.conformity_scores.AbsoluteConformityScore`.
110-
mapie = MapieRegressor(model, random_state=random_state)
111-
mapie.fit(X_train, y_train)
112-
y_pred_absconfscore, y_pis_absconfscore = mapie.predict(
113-
X_test, alpha=alpha, ensemble=True
105+
# conformity_score = "absolute".
106+
mapie = CrossConformalRegressor(
107+
model, confidence_level=confidence_level, conformity_score="absolute"
108+
)
109+
mapie.fit_conformalize(X_train_conformalize, y_train_conformalize)
110+
y_pred_absconfscore, y_pis_absconfscore = mapie.predict_interval(
111+
X_test
114112
)
115113

116114
coverage_absconfscore = regression_coverage_score(
@@ -138,14 +136,14 @@ def get_yerr(y_pred, y_pis):
138136
)
139137

140138
##############################################################################
141-
# Then, train the model with
142-
# :class:`~mapie.conformity_scores.GammaConformityScore`.
143-
mapie = MapieRegressor(
144-
model, conformity_score=GammaConformityScore(), random_state=random_state
139+
# Then, train the model with:
140+
# `conformity_score = "gamma"`.
141+
mapie = CrossConformalRegressor(
142+
model, confidence_level=confidence_level, conformity_score="gamma"
145143
)
146-
mapie.fit(X_train, y_train)
147-
y_pred_gammaconfscore, y_pis_gammaconfscore = mapie.predict(
148-
X_test, alpha=[alpha], ensemble=True
144+
mapie.fit_conformalize(X_train_conformalize, y_train_conformalize)
145+
y_pred_gammaconfscore, y_pis_gammaconfscore = mapie.predict_interval(
146+
X_test
149147
)
150148

151149
coverage_gammaconfscore = regression_coverage_score(
@@ -164,9 +162,9 @@ def get_yerr(y_pred, y_pis):
164162
#
165163
# Once the models have been trained, we now compare the prediction intervals
166164
# obtained from the two conformity scores. We can see that the
167-
# :class:`~mapie.conformity_scores.AbsoluteConformityScore` generates
165+
# ``"absolute" ``conformity score generates
168166
# prediction interval with almost the same width for all the predicted values.
169-
# Conversely, the `mapie.conformity_scores.GammaConformityScore`
167+
# Conversely, the ``"gamma"`` conformity score
170168
# yields prediction interval with width scaling with the predicted values.
171169
#
172170
# The choice of the conformity score depends on the problem we face.
@@ -209,7 +207,7 @@ def get_yerr(y_pred, y_pis):
209207
axs[1, img_id].set_ylim([ymin, ymax])
210208

211209
fig.suptitle(
212-
f"Predicted values with the prediction intervals of level {alpha}"
210+
f"Predicted values with the prediction intervals of level {confidence_level}"
213211
)
214212
plt.subplots_adjust(wspace=0.3, hspace=0.3)
215213
plt.show()

examples/regression/1-quickstart/plot_cqr_symmetry_difference.py

-117
This file was deleted.

0 commit comments

Comments
 (0)