-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathplot_comp_methods_on_2d_dataset.py
293 lines (261 loc) · 9.69 KB
/
plot_comp_methods_on_2d_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""
======================================================
Comparing prediction sets on a two-dimensional dataset
======================================================
In this tutorial, we compare the prediction sets estimated by
:class:`~mapie.classification.MapieClassifier` with the "lac"
and "aps" on the two-dimensional dataset presented
by Sadinle et al. (2019).
"""
##############################################################################
# We will use MAPIE to estimate a prediction set of several classes such that
# the probability that the true label of a new test point is included in the
# prediction set is always higher than the target confidence level :
# :math:`1 - \alpha`.
# Throughout this tutorial, we compare two conformity scores :
# softmax score or cumulated softmax score.
# We start by using the softmax score or cumulated score output by the base
# classifier as the conformity score on a toy two-dimensional dataset.
# We estimate the prediction sets as follows :
#
# * First we generate a dataset with train, calibration and test, the model
# is fitted in the training set.
#
# * We set the conformal score :math:`S_i = \hat{f}(X_{i})_{y_i}`
# from the softmax output of the true class or the cumulated score
# (by decreasing order) for each sample in the calibration set.
#
# * Then we define :math:`\hat{q}` as being the
# :math:`(n + 1) (1 - \alpha) / n`
# previous quantile of :math:`S_{1}, ..., S_{n}` (this is essentially the
# quantile :math:`\alpha`, but with a small sample correction).
#
# * Finally, for a new test data point (where :math:`X_{n + 1}` is known but
# :math:`Y_{n + 1}` is not), create a prediction set
# :math:`C(X_{n+1}) = \{y: \hat{f}(X_{n+1})_{y} > \hat{q}\}` which includes
# all the classes with a sufficiently high conformity score.
#
# We use a two-dimensional dataset with three labels.
# The distribution of the data is a bivariate normal with diagonal covariance
# matrices for each label.
# Reference:
# Mauricio Sadinle, Jing Lei, and Larry Wasserman.
# "Least Ambiguous Set-Valued Classifiers With Bounded Error Levels."
# Journal of the American Statistical Association, 114:525, 223-234, 2019.
from typing import List
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from mapie._typing import NDArray
from mapie.classification import MapieClassifier
from mapie.metrics import (classification_coverage_score,
classification_mean_width_score)
centers = [(0, 3.5), (-2, 0), (2, 0)]
covs = [np.eye(2), np.eye(2) * 2, np.diag([5, 1])]
x_min, x_max, y_min, y_max, step = -6, 8, -6, 8, 0.1
n_samples = 500
n_classes = 3
np.random.seed(42)
X = np.vstack(
[
np.random.multivariate_normal(center, cov, n_samples)
for center, cov in zip(centers, covs)
]
)
y = np.hstack([np.full(n_samples, i) for i in range(n_classes)])
X_train, X_cal, y_train, y_cal = train_test_split(X, y, test_size=0.3)
xx, yy = np.meshgrid(
np.arange(x_min, x_max, step), np.arange(x_min, x_max, step)
)
X_test = np.stack([xx.ravel(), yy.ravel()], axis=1)
##############################################################################
# Let's see our training data
colors = {0: "#1f77b4", 1: "#ff7f0e", 2: "#2ca02c", 3: "#d62728"}
y_train_col = list(map(colors.get, y_train))
fig = plt.figure()
plt.scatter(
X_train[:, 0],
X_train[:, 1],
color=y_train_col,
marker="o",
s=10,
edgecolor="k",
)
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
##############################################################################
# We fit our training data with a Gaussian Naive Base estimator.
# Then we apply :class:`~mapie.classification.MapieClassifier` in the
# calibration data with the methods ``"lac"`` and ``"aps"```
# to the estimator indicating that it has already been fitted with
# `cv="prefit"`.
# We then estimate the prediction sets with differents alpha values with a
# ``fit`` and ``predict`` process.
clf = GaussianNB().fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_pred_proba = clf.predict_proba(X_test)
y_pred_proba_max = np.max(y_pred_proba, axis=1)
methods = ["lac", "aps"]
mapie, y_pred_mapie, y_ps_mapie = {}, {}, {}
alpha = [0.2, 0.1, 0.05]
for method in methods:
mapie[method] = MapieClassifier(
estimator=clf,
method=method,
cv="prefit",
random_state=42,
)
mapie[method].fit(X_cal, y_cal)
y_pred_mapie[method], y_ps_mapie[method] = mapie[method].predict(
X_test, alpha=alpha, include_last_label=True,
)
##############################################################################
# MAPIE produces two outputs:
#
# - y_pred_mapie: the prediction in the test set given by the base estimator.
#
# - y_ps_mapie: the prediction sets estimated by MAPIE using the selected
# method.
#
# Let's now visualize the distribution of the conformity scores with the two
# methods with the calculated quantiles for the three alpha values.
def plot_scores(
alphas: List[float],
scores: NDArray,
quantiles: NDArray,
method: str,
ax: plt.Axes,
) -> None:
colors = {0: "#1f77b4", 1: "#ff7f0e", 2: "#2ca02c"}
ax.hist(scores, bins="auto")
i = 0
for quantile in quantiles:
ax.vlines(
x=quantile,
ymin=0,
ymax=500,
color=colors[i],
linestyles="dashed",
label=f"alpha = {alphas[i]}",
)
i = i + 1
ax.set_title(f"Distribution of scores for '{method}' method")
ax.legend()
ax.set_xlabel("scores")
ax.set_ylabel("count")
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
for i, method in enumerate(methods):
conformity_scores = mapie[method].conformity_scores_
n = mapie[method].n_samples_
quantiles = mapie[method].conformity_score_function_.quantiles_
plot_scores(alpha, conformity_scores, quantiles, method, axs[i])
plt.show()
##############################################################################
# We will now compare the differences between the prediction sets of the
# different values of alpha.
def plot_results(
alphas: List[float], y_pred_mapie: NDArray, y_ps_mapie: NDArray
) -> None:
tab10 = plt.cm.get_cmap("Purples", 4)
colors = {
0: "#1f77b4",
1: "#ff7f0e",
2: "#2ca02c",
3: "#d62728",
4: "#c896af",
5: "#94a98a",
6: "#8a94a9",
7: "#a99f8a",
8: "#1e1b16",
9: "#4a4336",
}
y_pred_col = list(map(colors.get, y_pred_mapie))
fig, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2, figsize=(10, 10))
axs = {0: ax1, 1: ax2, 2: ax3, 3: ax4}
axs[0].scatter(
X_test[:, 0],
X_test[:, 1],
color=y_pred_col,
marker=".",
s=10,
alpha=0.4,
)
axs[0].set_title("Predicted labels")
for i, alpha_ in enumerate(alphas):
y_pi_sums = y_ps_mapie[:, :, i].sum(axis=1)
num_labels = axs[i + 1].scatter(
X_test[:, 0],
X_test[:, 1],
c=y_pi_sums,
marker="o",
s=10,
alpha=1,
cmap=tab10,
vmin=0,
vmax=3,
)
plt.colorbar(num_labels, ax=axs[i + 1])
axs[i + 1].set_title(f"Number of labels for alpha={alpha_}")
plt.show()
for method in methods:
plot_results(alpha, y_pred_mapie[method], y_ps_mapie[method])
##############################################################################
# For the "lac" method, when the class coverage is not large enough, the
# prediction sets can be empty when the model is uncertain at the border
# between two labels. These null regions disappear for larger class coverages
# but ambiguous classification regions arise with several labels included in
# the prediction sets.
# By definition, the "aps" method does not produce empty
# prediction sets. However, the prediction sets tend to be slightly bigger
# in ambiguous regions.
#
# Let's now compare the effective coverage and the average of prediction set
# widths as function of the :math:`1-\alpha` target coverage.
alpha_ = np.arange(0.02, 0.98, 0.02)
coverage, mean_width = {}, {}
mapie, y_ps_mapie = {}, {}
for method in methods:
mapie[method] = MapieClassifier(
estimator=clf,
method=method,
cv="prefit",
random_state=42,
)
mapie[method].fit(X_cal, y_cal)
_, y_ps_mapie[method] = mapie[method].predict(
X, alpha=alpha_, include_last_label="randomized"
)
coverage[method] = [
classification_coverage_score(y, y_ps_mapie[method][:, :, i])
for i, _ in enumerate(alpha_)
]
mean_width[method] = [
classification_mean_width_score(y_ps_mapie[method][:, :, i])
for i, _ in enumerate(alpha_)
]
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
axs[0].set_xlabel("1 - alpha")
axs[0].set_ylabel("Quantile")
for method in methods:
quantiles = mapie[method].conformity_score_function_.quantiles_
axs[0].scatter(1 - alpha_, quantiles, label=method)
axs[0].legend()
for method in methods:
axs[1].scatter(1 - alpha_, coverage[method], label=method)
axs[1].set_xlabel("1 - alpha")
axs[1].set_ylabel("Coverage score")
axs[1].plot([0, 1], [0, 1], label="x=y", color="black")
axs[1].legend()
for method in methods:
axs[2].scatter(1 - alpha_, mean_width[method], label=method)
axs[2].set_xlabel("1 - alpha")
axs[2].set_ylabel("Average size of prediction sets")
axs[2].legend()
plt.show()
##############################################################################
# It is seen that both methods give coverages close to the target coverages,
# regardless of the :math:`\alpha` value. However, the "aps"
# produces slightly bigger prediction sets, but without empty regions
# (if the selection of the last label is not randomized).