Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ambiguous error message in filling histogram #577

Open
bockjoo opened this issue Jul 30, 2024 · 0 comments
Open

Ambiguous error message in filling histogram #577

bockjoo opened this issue Jul 30, 2024 · 0 comments

Comments

@bockjoo
Copy link

bockjoo commented Jul 30, 2024

Hi,
Without knowning that the variables in the histogram filling have to be arrays with the same length, I passed
a number to the binning (x-axis)and a weight of an array for the y-axis and I got this ambiguos error message:

File "/home/bockjoo/opt/cmsio2/cms/services/T2/ops/Work/AAA/vll-analysis.Coffea2024.6.1/lib/python3.12/site-packages/boost_histogram/_internal/hist.py", line 504, in fill
    self._hist.fill(*args_ars, weight=weight_ars, sample=sample_ars)  # type: ignore[arg-type]
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: spans must have compatible lengths

I am using:

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import hist
>>> hist.__version__
'2.7.3'

This is the script that can demonstrate the issue:

import os
import ssl
import hist
import dask
import awkward as ak
import hist.dask as hda
import dask_awkward as dak

from coffea import processor
from coffea.nanoevents.methods import candidate
from distributed import Client
from coffea.nanoevents import NanoEventsFactory, BaseSchema, NanoAODSchema
from coffea.nanoevents.methods import candidate, nanoaod, vector
from coffea.analysis_tools import PackedSelection, Weights

class VLLProcessor(processor.ProcessorABC):
    def __init__(self, isMC=True, era="2018", writeOutParquet=False):
        self.isMC = isMC
        ak.behavior.update(nanoaod.behavior)
        dataset_axis = hda.hist.hist.axis.StrCategory([], growth=True, name="dataset", label="Dataset")
        cutflow_axis = hda.hist.hist.axis.StrCategory([], growth=True, name="cutflow",label="Cutflow")
        cut = hda.hist.hist.axis.Regular(14, 0, 14, name="cut", label=r"Cutflow")
        self.make_output = lambda: {
            "CutFlow": hda.hist.Hist(dataset_axis,cut,),
        }
        
    def process(self, events, shift_syst=None):
        dataset = events.metadata['dataset']
        output = self.make_output()
        selection = PackedSelection()
        selection.add("0", (events.Flag.goodVertices) & (events.Flag.globalSuperTightHalo2016Filter) & (events.Flag.HBHENoiseFilter) & (events.Flag.HBHENoiseIsoFilter) & 
                    (events.Flag.EcalDeadCellTriggerPrimitiveFilter) & (events.Flag.BadPFMuonFilter) & (((not (self.isMC)) & events.Flag.eeBadScFilter) | (self.isMC)) )
        wgt = selection.all("0")
        bin=0
        output["CutFlow"].fill(
                    dataset=dataset,
                    cut=b, # dak.ones_like(wgt)*bin,
                    weight=wgt,
        )
        
        return {dataset:output}        
        
    def postprocess(self, accumulator):
        pass

if __name__ == '__main__':
 filename = "root://cmsxrootd.hep.wisc.edu:1094//store/mc/RunIISummer20UL18NanoAODv9/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/NANOAODSIM/106X_upgrade2018_realistic_v16_L1v1-v1/130000/44187D37-0301-3942-A6F7-C723E9F4813D.root"

 events = NanoEventsFactory.from_root(
    {filename: "Events"},
    steps_per_file=2_000,
    metadata={"dataset": "TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8"},
    schemaclass=NanoAODSchema,
 ).events()
 p = VLLProcessor(isMC=True)
 out = p.process(events)

 (computed,) = dask.compute(out)
 print(computed)

Thanks,
Bockjoo

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant