-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclient.py
1249 lines (1034 loc) · 50.9 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import inspect # pylint: disable=C0302
import logging
import os
import shutil
import tempfile
from io import StringIO
from typing import Any, Callable, Dict, List, Optional, TypeVar, Union
from zipfile import ZipFile
import cloudpickle
import requests
import yaml
from deprecation import deprecated
from launch.connection import Connection
from launch.constants import (
ASYNC_TASK_PATH,
ASYNC_TASK_RESULT_PATH,
BATCH_TASK_INPUT_SIGNED_URL_PATH,
BATCH_TASK_PATH,
BATCH_TASK_RESULTS_PATH,
ENDPOINT_PATH,
MODEL_BUNDLE_SIGNED_URL_PATH,
SCALE_LAUNCH_ENDPOINT,
SYNC_TASK_PATH,
)
from launch.errors import APIError
from launch.find_packages import find_packages_from_imports, get_imports
from launch.hooks import PostInferenceHooks
from launch.make_batch_file import (
make_batch_input_dict_file,
make_batch_input_file,
)
from launch.model_bundle import ModelBundle
from launch.model_endpoint import (
AsyncEndpoint,
Endpoint,
ModelEndpoint,
SyncEndpoint,
)
from launch.request_validation import validate_task_request
from launch.utils import infer_env_params, trim_kwargs
DEFAULT_NETWORK_TIMEOUT_SEC = 120
logger = logging.getLogger(__name__)
logging.basicConfig()
LaunchModel_T = TypeVar("LaunchModel_T")
def _model_bundle_to_name(model_bundle: Union[ModelBundle, str]) -> str:
if isinstance(model_bundle, ModelBundle):
return model_bundle.name
elif isinstance(model_bundle, str):
return model_bundle
else:
raise TypeError("model_bundle should be type ModelBundle or str")
def _model_endpoint_to_name(model_endpoint: Union[ModelEndpoint, str]) -> str:
if isinstance(model_endpoint, ModelEndpoint):
return model_endpoint.name
elif isinstance(model_endpoint, str):
return model_endpoint
else:
raise TypeError("model_endpoint should be type ModelEndpoint or str")
def _add_app_config_to_bundle_create_payload(
payload: Dict[str, Any], app_config: Optional[Union[Dict[str, Any], str]]
):
"""
Edits a request payload (for creating a bundle) to include a (not serialized) app_config if it's not None
"""
if isinstance(app_config, Dict):
payload["app_config"] = app_config
elif isinstance(app_config, str):
with open( # pylint: disable=unspecified-encoding
app_config, "r"
) as f:
app_config_dict = yaml.safe_load(f)
payload["app_config"] = app_config_dict
class LaunchClient:
"""Scale Launch Python Client."""
def __init__(
self,
api_key: str,
endpoint: Optional[str] = None,
self_hosted: bool = False,
):
"""
Initializes a Scale Launch Client.
Parameters:
api_key: Your Scale API key
endpoint: The Scale Launch Endpoint (this should not need to be changed)
self_hosted: True iff you are connecting to a self-hosted Scale Launch
"""
endpoint = endpoint or SCALE_LAUNCH_ENDPOINT
self.connection = Connection(api_key, endpoint)
self.self_hosted = self_hosted
self.upload_bundle_fn: Optional[Callable[[str, str], None]] = None
self.upload_batch_csv_fn: Optional[Callable[[str, str], None]] = None
self.endpoint_auth_decorator_fn: Callable[
[Dict[str, Any]], Dict[str, Any]
] = lambda x: x
self.bundle_location_fn: Optional[Callable[[], str]] = None
self.batch_csv_location_fn: Optional[Callable[[], str]] = None
def __repr__(self):
return f"LaunchClient(connection='{self.connection}')"
def __eq__(self, other):
return self.connection == other.connection
def register_upload_bundle_fn(
self, upload_bundle_fn: Callable[[str, str], None]
):
"""
For self-hosted mode only. Registers a function that handles model bundle upload. This function is called as
upload_bundle_fn(serialized_bundle, bundle_url)
This function should directly write the contents of ``serialized_bundle`` as a
binary string into ``bundle_url``.
See ``register_bundle_location_fn`` for more notes on the signature of ``upload_bundle_fn``
Parameters:
upload_bundle_fn: Function that takes in a serialized bundle (bytes type), and uploads that bundle to an appropriate
location. Only needed for self-hosted mode.
"""
self.upload_bundle_fn = upload_bundle_fn
def register_upload_batch_csv_fn(
self, upload_batch_csv_fn: Callable[[str, str], None]
):
"""
For self-hosted mode only. Registers a function that handles batch text upload. This function is called as
upload_batch_csv_fn(csv_text, csv_url)
This function should directly write the contents of ``csv_text`` as a text string into ``csv_url``.
Parameters:
upload_batch_csv_fn: Function that takes in a csv text (string type), and uploads that bundle to an appropriate
location. Only needed for self-hosted mode.
"""
self.upload_batch_csv_fn = upload_batch_csv_fn
def register_bundle_location_fn(
self, bundle_location_fn: Callable[[], str]
):
"""
For self-hosted mode only. Registers a function that gives a location for a model bundle. Should give different
locations each time. This function is called as ``bundle_location_fn()``, and should return a ``bundle_url``
that ``register_upload_bundle_fn`` can take.
Strictly, ``bundle_location_fn()`` does not need to return a ``str``. The only requirement is that if
``bundle_location_fn`` returns a value of type ``T``, then ``upload_bundle_fn()`` takes in an object of type T
as its second argument (i.e. bundle_url).
Parameters:
bundle_location_fn: Function that generates bundle_urls for upload_bundle_fn.
"""
self.bundle_location_fn = bundle_location_fn
def register_batch_csv_location_fn(
self, batch_csv_location_fn: Callable[[], str]
):
"""
For self-hosted mode only. Registers a function that gives a location for batch CSV inputs. Should give different
locations each time. This function is called as batch_csv_location_fn(), and should return a batch_csv_url that
upload_batch_csv_fn can take.
Strictly, batch_csv_location_fn() does not need to return a str. The only requirement is that if batch_csv_location_fn
returns a value of type T, then upload_batch_csv_fn() takes in an object of type T as its second argument
(i.e. batch_csv_url).
Parameters:
batch_csv_location_fn: Function that generates batch_csv_urls for upload_batch_csv_fn.
"""
self.batch_csv_location_fn = batch_csv_location_fn
def register_endpoint_auth_decorator(self, endpoint_auth_decorator_fn):
"""
For self-hosted mode only. Registers a function that modifies the endpoint creation payload to include
required fields for self-hosting.
"""
self.endpoint_auth_decorator_fn = endpoint_auth_decorator_fn
def create_model_bundle_from_dirs(
self,
model_bundle_name: str,
base_paths: List[str],
requirements_path: str,
load_predict_fn_module_path: str,
load_model_fn_module_path: str,
env_params: Optional[Dict[str, str]],
env_selector: Optional[str],
app_config: Optional[Union[Dict[str, Any], str]] = None,
) -> ModelBundle:
"""
Packages up code from one or more local filesystem folders and uploads them as a bundle to Scale Launch.
In this mode, a bundle is just local code instead of a serialized object.
For example, if you have a directory structure like so, and your current working directory is also ``my_root``:
.. code-block:: text
my_root/
my_module1/
__init__.py
...files and directories
my_inference_file.py
my_module2/
__init__.py
...files and directories
then calling ``create_model_bundle_from_dirs`` with ``base_paths=["my_module1", "my_module2"]`` essentially
creates a zip file without the root directory, e.g.:
.. code-block:: text
my_module1/
__init__.py
...files and directories
my_inference_file.py
my_module2/
__init__.py
...files and directories
and these contents will be unzipped relative to the server side application root. Bear these points in mind when
referencing Python module paths for this bundle. For instance, if ``my_inference_file.py`` has ``def f(...)``
as the desired inference loading function, then the `load_predict_fn_module_path` argument should be
`my_module1.my_inference_file.f`.
Parameters:
model_bundle_name: The name of the model bundle you want to create. The name must be unique across all
bundles that you own.
base_paths: The paths on the local filesystem where the bundle code lives.
requirements_path: A path on the local filesystem where a ``requirements.txt`` file lives.
env_params: A dictionary that dictates environment information e.g.
the use of pytorch or tensorflow, which base image tag to use, etc.
Specifically, the dictionary should contain the following keys:
- ``framework_type``: either ``tensorflow`` or ``pytorch``.
- PyTorch fields:
- ``pytorch_image_tag``: An image tag for the ``pytorch`` docker base image. The list of tags
can be found from https://hub.docker.com/r/pytorch/pytorch/tags.
- Example:
.. code-block:: python
{
"framework_type": "pytorch",
"pytorch_image_tag": "1.10.0-cuda11.3-cudnn8-runtime"
}
load_predict_fn_module_path: A python module path for a function that, when called with the output of
load_model_fn_module_path, returns a function that carries out inference.
load_model_fn_module_path: A python module path for a function that returns a model. The output feeds into
the function located at load_predict_fn_module_path.
app_config: Either a Dictionary that represents a YAML file contents or a local path to a YAML file.
"""
with open(requirements_path, "r", encoding="utf-8") as req_f:
requirements = req_f.read().splitlines()
if env_params is None:
env_params = infer_env_params(env_selector)
tmpdir = tempfile.mkdtemp()
try:
zip_path = os.path.join(tmpdir, "bundle.zip")
_zip_directories(zip_path, base_paths)
with open(zip_path, "rb") as zip_f:
data = zip_f.read()
finally:
shutil.rmtree(tmpdir)
if self.self_hosted:
if self.upload_bundle_fn is None:
raise ValueError("Upload_bundle_fn should be registered")
if self.bundle_location_fn is None:
raise ValueError(
"Need either bundle_location_fn to know where to upload bundles"
)
raw_bundle_url = self.bundle_location_fn() # type: ignore
self.upload_bundle_fn(data, raw_bundle_url) # type: ignore
else:
model_bundle_url = self.connection.post(
{}, MODEL_BUNDLE_SIGNED_URL_PATH
)
s3_path = model_bundle_url["signedUrl"]
raw_bundle_url = (
f"s3://{model_bundle_url['bucket']}/{model_bundle_url['key']}"
)
requests.put(s3_path, data=data)
bundle_metadata = {
"load_predict_fn_module_path": load_predict_fn_module_path,
"load_model_fn_module_path": load_model_fn_module_path,
}
logger.info(
"create_model_bundle_from_dirs: raw_bundle_url=%s",
raw_bundle_url,
)
payload = dict(
packaging_type="zip",
bundle_name=model_bundle_name,
location=raw_bundle_url,
bundle_metadata=bundle_metadata,
requirements=requirements,
env_params=env_params,
)
_add_app_config_to_bundle_create_payload(payload, app_config)
self.connection.post(
payload=payload,
route="model_bundle",
)
return ModelBundle(model_bundle_name)
def create_model_bundle( # pylint: disable=too-many-statements
self,
model_bundle_name: str,
env_params: Optional[Dict[str, str]],
env_selector: Optional[str],
*,
load_predict_fn: Optional[
Callable[[LaunchModel_T], Callable[[Any], Any]]
] = None,
predict_fn_or_cls: Optional[Callable[[Any], Any]] = None,
requirements: Optional[List[str]] = None,
model: Optional[LaunchModel_T] = None,
load_model_fn: Optional[Callable[[], LaunchModel_T]] = None,
bundle_url: Optional[str] = None,
app_config: Optional[Union[Dict[str, Any], str]] = None,
globals_copy: Optional[Dict[str, Any]] = None,
) -> ModelBundle:
"""
Uploads and registers a model bundle to Scale Launch.
A model bundle consists of exactly one of the following:
- ``predict_fn_or_cls``
- ``load_predict_fn + model``
- ``load_predict_fn + load_model_fn``
Pre/post-processing code can be included inside load_predict_fn/model or in predict_fn_or_cls call.
Parameters:
model_bundle_name: The name of the model bundle you want to create. The name must be unique across all
bundles that you own.
predict_fn_or_cls: ``Function`` or a ``Callable`` class that runs end-to-end (pre/post processing and model inference) on the call.
i.e. ``predict_fn_or_cls(REQUEST) -> RESPONSE``.
model: Typically a trained Neural Network, e.g. a Pytorch module.
Exactly one of ``model`` and ``load_model_fn`` must be provided.
load_model_fn: A function that, when run, loads a model. This function is essentially a deferred
wrapper around the ``model`` argument.
Exactly one of ``model`` and ``load_model_fn`` must be provided.
load_predict_fn: Function that, when called with a model, returns a function that carries out inference.
If ``model`` is specified, then this is equivalent
to:
``load_predict_fn(model, app_config=optional_app_config]) -> predict_fn``
Otherwise, if ``load_model_fn`` is specified, then this is equivalent
to:
``load_predict_fn(load_model_fn(), app_config=optional_app_config]) -> predict_fn``
In both cases, ``predict_fn`` is then the inference function, i.e.:
``predict_fn(REQUEST) -> RESPONSE``
requirements: A list of python package requirements, where each list element is of the form
``<package_name>==<package_version>``, e.g.
``["tensorflow==2.3.0", "tensorflow-hub==0.11.0"]``
If you do not pass in a value for ``requirements``, then you must pass in ``globals()`` for the
``globals_copy`` argument.
app_config: Either a Dictionary that represents a YAML file contents or a local path to a YAML file.
env_params: A dictionary that dictates environment information e.g.
the use of pytorch or tensorflow, which base image tag to use, etc.
Specifically, the dictionary should contain the following keys:
- ``framework_type``: either ``tensorflow`` or ``pytorch``.
- PyTorch fields:
- ``pytorch_image_tag``: An image tag for the ``pytorch`` docker base image. The list of tags
can be found from https://hub.docker.com/r/pytorch/pytorch/tags.
- Example:
.. code-block:: python
{
"framework_type": "pytorch",
"pytorch_image_tag": "1.10.0-cuda11.3-cudnn8-runtime"
}
- Tensorflow fields:
- ``tensorflow_version``: Version of tensorflow, e.g. ``"2.3.0"``.
globals_copy: Dictionary of the global symbol table. Normally provided by ``globals()`` built-in function.
bundle_url: (Only used in self-hosted mode.) The desired location of bundle.
Overrides any value given by ``self.bundle_location_fn``
"""
# TODO(ivan): remove `disable=too-many-branches` when get rid of `load_*` functions
# pylint: disable=too-many-branches
check_args = [
predict_fn_or_cls is not None,
load_predict_fn is not None and model is not None,
load_predict_fn is not None and load_model_fn is not None,
]
if sum(check_args) != 1:
raise ValueError(
"A model bundle consists of exactly {predict_fn_or_cls}, {load_predict_fn + model}, or {load_predict_fn + load_model_fn}."
)
# TODO should we try to catch when people intentionally pass both model and load_model_fn as None?
if env_params is None:
env_params = infer_env_params(env_selector)
if requirements is None:
# TODO explore: does globals() actually work as expected? Should we use globals_copy instead?
requirements_inferred = find_packages_from_imports(globals())
requirements = [
f"{key}=={value}"
for key, value in requirements_inferred.items()
]
logger.info(
"Using \n%s\n for model bundle %s",
requirements,
model_bundle_name,
)
# Prepare cloudpickle for external imports
if globals_copy:
for module in get_imports(globals_copy):
if module.__name__ == cloudpickle.__name__:
# Avoid recursion
# register_pickle_by_value does not work properly with itself
continue
cloudpickle.register_pickle_by_value(module)
bundle: Union[
Callable[[Any], Any], Dict[str, Any], None
] # validate bundle
bundle_metadata = {}
# Create bundle
if predict_fn_or_cls:
bundle = predict_fn_or_cls
if inspect.isfunction(predict_fn_or_cls):
source_code = inspect.getsource(predict_fn_or_cls)
else:
source_code = inspect.getsource(predict_fn_or_cls.__class__)
bundle_metadata["predict_fn_or_cls"] = source_code
elif model is not None:
bundle = dict(model=model, load_predict_fn=load_predict_fn)
bundle_metadata["load_predict_fn"] = inspect.getsource(
load_predict_fn # type: ignore
)
else:
bundle = dict(
load_model_fn=load_model_fn, load_predict_fn=load_predict_fn
)
bundle_metadata["load_predict_fn"] = inspect.getsource(
load_predict_fn # type: ignore
)
bundle_metadata["load_model_fn"] = inspect.getsource(
load_model_fn # type: ignore
)
serialized_bundle = cloudpickle.dumps(bundle)
if self.self_hosted:
if self.upload_bundle_fn is None:
raise ValueError("Upload_bundle_fn should be registered")
if self.bundle_location_fn is None and bundle_url is None:
raise ValueError(
"Need either bundle_location_fn or bundle_url to know where to upload bundles"
)
if bundle_url is None:
bundle_url = self.bundle_location_fn() # type: ignore
self.upload_bundle_fn(serialized_bundle, bundle_url)
raw_bundle_url = bundle_url
else:
# Grab a signed url to make upload to
model_bundle_s3_url = self.connection.post(
{}, MODEL_BUNDLE_SIGNED_URL_PATH
)
s3_path = model_bundle_s3_url["signedUrl"]
raw_bundle_url = f"s3://{model_bundle_s3_url['bucket']}/{model_bundle_s3_url['key']}"
# Make bundle upload
requests.put(s3_path, data=serialized_bundle)
payload = dict(
packaging_type="cloudpickle",
bundle_name=model_bundle_name,
location=raw_bundle_url,
bundle_metadata=bundle_metadata,
requirements=requirements,
env_params=env_params,
)
_add_app_config_to_bundle_create_payload(payload, app_config)
self.connection.post(
payload=payload,
route="model_bundle",
) # TODO use return value somehow
# resp["data"]["bundle_name"] should equal model_bundle_name
# TODO check that a model bundle was created and no name collisions happened
return ModelBundle(model_bundle_name)
def create_model_endpoint(
self,
endpoint_name: str,
model_bundle: Union[ModelBundle, str],
cpus: int = 3,
memory: str = "8Gi",
gpus: int = 0,
min_workers: int = 1,
max_workers: int = 1,
per_worker: int = 10,
gpu_type: Optional[str] = None,
endpoint_type: str = "sync",
post_inference_hooks: Optional[List[PostInferenceHooks]] = None,
update_if_exists: bool = False,
labels: Optional[Dict[str, str]] = None,
) -> Optional[Endpoint]:
"""
Creates and registers a model endpoint in Scale Launch. The returned object is an instance of type ``Endpoint``,
which is a base class of either ``SyncEndpoint`` or ``AsyncEndpoint``. This is the object
to which you sent inference requests.
Parameters:
endpoint_name: The name of the model endpoint you want to create. The name must be unique across
all endpoints that you own.
model_bundle: The ``ModelBundle`` that the endpoint should serve.
cpus: Number of cpus each worker should get, e.g. 1, 2, etc. This must be greater than or equal to 1.
memory: Amount of memory each worker should get, e.g. "4Gi", "512Mi", etc. This must be a positive
amount of memory.
gpus: Number of gpus each worker should get, e.g. 0, 1, etc.
min_workers: The minimum number of workers. Must be greater than or equal to 0. This should be determined
by computing the minimum throughput of your workload and dividing it by the throughput of a single
worker. This field must be at least ``1`` for synchronous endpoints.
max_workers: The maximum number of workers. Must be greater than or equal to 0, and as well as
greater than or equal to ``min_workers``. This should be determined by computing the maximum throughput
of your workload and dividing it by the throughput of a single worker.
per_worker: The maximum number of concurrent requests that an individual worker can service. Launch
automatically scales the number of workers for the endpoint so that each worker is processing
``per_worker`` requests, subject to the limits defined by ``min_workers`` and ``max_workers``.
- If the average number of concurrent requests per worker is lower than ``per_worker``, then the number
of workers will be reduced.
- Otherwise, if the average number of concurrent requests per worker is higher
than ``per_worker``, then the number of workers will be increased to meet the elevated traffic.
Here is our recommendation for computing ``per_worker``:
1. Compute ``min_workers`` and ``max_workers`` per your minimum and maximum throughput requirements.
2. Determine a value for the maximum number of concurrent requests in the workload. Divide this number
by ``max_workers``. Doing this ensures that the number of workers will "climb" to ``max_workers``.
gpu_type: If specifying a non-zero number of gpus, this controls the type of gpu requested. Here are the
supported values:
- ``nvidia-tesla-t4``
- ``nvidia-ampere-a10``
endpoint_type: Either ``"sync"`` or ``"async"``.
post_inference_hooks: List of hooks to trigger after inference tasks are served.
update_if_exists: If ``True``, will attempt to update the endpoint if it exists. Otherwise, will
unconditionally try to create a new endpoint. Note that endpoint names for a given user must be unique,
so attempting to call this function with ``update_if_exists=False`` for an existing endpoint will raise
an error.
labels: An optional dictionary of key/value pairs to associate with this endpoint.
Returns:
A Endpoint object that can be used to make requests to the endpoint.
"""
if update_if_exists and self.get_model_endpoint(endpoint_name):
self.edit_model_endpoint(
model_endpoint=endpoint_name,
model_bundle=model_bundle,
cpus=cpus,
memory=memory,
gpus=gpus,
min_workers=min_workers,
max_workers=max_workers,
per_worker=per_worker,
gpu_type=gpu_type,
)
# R1710: Either all return statements in a function should return an expression, or none of them should.
return None
else:
# Presumably, the user knows that the endpoint doesn't already exist, and so we can defer
# to the server to reject any duplicate creations.
logger.info("Creating new endpoint")
bundle_name = _model_bundle_to_name(model_bundle)
payload = dict(
endpoint_name=endpoint_name,
bundle_name=bundle_name,
cpus=cpus,
memory=memory,
gpus=gpus,
gpu_type=gpu_type,
min_workers=min_workers,
max_workers=max_workers,
per_worker=per_worker,
endpoint_type=endpoint_type,
post_inference_hooks=post_inference_hooks,
labels=labels or {},
)
if gpus == 0:
del payload["gpu_type"]
elif gpus > 0 and gpu_type is None:
raise ValueError("If nonzero gpus, must provide gpu_type")
payload = self.endpoint_auth_decorator_fn(payload)
resp = self.connection.post(payload, ENDPOINT_PATH)
endpoint_creation_task_id = resp.get(
"endpoint_creation_task_id", None
) # TODO probably throw on None
logger.info(
"Endpoint creation task id is %s", endpoint_creation_task_id
)
model_endpoint = ModelEndpoint(
name=endpoint_name, bundle_name=bundle_name
)
if endpoint_type == "async":
return AsyncEndpoint(
model_endpoint=model_endpoint, client=self
)
elif endpoint_type == "sync":
return SyncEndpoint(model_endpoint=model_endpoint, client=self)
else:
raise ValueError(
"Endpoint should be one of the types 'sync' or 'async'"
)
def edit_model_endpoint(
self,
model_endpoint: Union[ModelEndpoint, str],
model_bundle: Optional[Union[ModelBundle, str]] = None,
cpus: Optional[float] = None,
memory: Optional[str] = None,
gpus: Optional[int] = None,
min_workers: Optional[int] = None,
max_workers: Optional[int] = None,
per_worker: Optional[int] = None,
gpu_type: Optional[str] = None,
post_inference_hooks: Optional[List[PostInferenceHooks]] = None,
) -> None:
"""
Edits an existing model endpoint. Here are the fields that **cannot** be edited on an existing endpoint:
- The endpoint's name.
- The endpoint's type (i.e. you cannot go from a ``SyncEnpdoint`` to an ``AsyncEndpoint`` or vice versa.
Parameters:
model_endpoint: The model endpoint (or its name) you want to edit. The name must be unique across
all endpoints that you own.
model_bundle: The ``ModelBundle`` that the endpoint should serve.
cpus: Number of cpus each worker should get, e.g. 1, 2, etc. This must be greater than or equal to 1.
memory: Amount of memory each worker should get, e.g. "4Gi", "512Mi", etc. This must be a positive
amount of memory.
gpus: Number of gpus each worker should get, e.g. 0, 1, etc.
min_workers: The minimum number of workers. Must be greater than or equal to 0.
max_workers: The maximum number of workers. Must be greater than or equal to 0, and as well as
greater than or equal to ``min_workers``.
per_worker: The maximum number of concurrent requests that an individual worker can service. Launch
automatically scales the number of workers for the endpoint so that each worker is processing
``per_worker`` requests:
- If the average number of concurrent requests per worker is lower than ``per_worker``, then the number
of workers will be reduced.
- Otherwise, if the average number of concurrent requests per worker is higher
than ``per_worker``, then the number of workers will be increased to meet the elevated traffic.
gpu_type: If specifying a non-zero number of gpus, this controls the type of gpu requested. Here are the
supported values:
- ``nvidia-tesla-t4``
- ``nvidia-ampere-a10``
endpoint_type: Either ``"sync"`` or ``"async"``.
post_inference_hooks: List of hooks to trigger after inference tasks are served.
"""
logger.info("Editing existing endpoint")
bundle_name = (
_model_bundle_to_name(model_bundle) if model_bundle else None
)
endpoint_name = _model_endpoint_to_name(model_endpoint)
payload = dict(
bundle_name=bundle_name,
cpus=cpus,
memory=memory,
gpus=gpus,
gpu_type=gpu_type,
min_workers=min_workers,
max_workers=max_workers,
per_worker=per_worker,
post_inference_hooks=post_inference_hooks,
)
# Allows changing some authorization settings by changing endpoint_auth_decorator_fn
payload = self.endpoint_auth_decorator_fn(payload)
if gpus == 0 and gpu_type is not None:
logger.warning("GPU type setting %s will have no effect", gpu_type)
payload["gpu_type"] = None
payload = trim_kwargs(payload)
resp = self.connection.put(payload, f"{ENDPOINT_PATH}/{endpoint_name}")
endpoint_creation_task_id = resp.get(
"endpoint_creation_task_id", None
) # Returned from server as "creation"
logger.info("Endpoint edit task id is %s", endpoint_creation_task_id)
def get_model_endpoint(
self, endpoint_name: str
) -> Optional[Union[AsyncEndpoint, SyncEndpoint]]:
"""
Gets a model endpoint associated with a name.
Parameters:
endpoint_name: The name of the endpoint to retrieve.
"""
try:
resp = self.connection.get(
os.path.join(ENDPOINT_PATH, endpoint_name)
)
except APIError as e:
if e.status_code != 404:
logger.exception(
"Got an error when retrieving endpoint %s", endpoint_name
)
return None
if resp["endpoint_type"] == "async":
return AsyncEndpoint(ModelEndpoint.from_dict(resp), client=self) # type: ignore
elif resp["endpoint_type"] == "sync":
return SyncEndpoint(ModelEndpoint.from_dict(resp), client=self) # type: ignore
else:
raise ValueError(
"Endpoint should be one of the types 'sync' or 'async'"
)
def list_model_bundles(self) -> List[ModelBundle]:
"""
Returns a list of model bundles that the user owns.
Returns:
A list of ModelBundle objects
"""
resp = self.connection.get("model_bundle")
model_bundles = [
ModelBundle.from_dict(item) for item in resp["bundles"] # type: ignore
]
return model_bundles
def get_model_bundle(
self, model_bundle: Union[ModelBundle, str]
) -> ModelBundle:
"""
Returns a model bundle specified by ``bundle_name`` that the user owns.
Parameters:
model_bundle: The bundle or its name.
Returns:
A ``ModelBundle`` object
"""
bundle_name = _model_bundle_to_name(model_bundle)
resp = self.connection.get(f"model_bundle/{bundle_name}")
assert (
len(resp["bundles"]) == 1
), f"Bundle with name `{bundle_name}` not found"
return ModelBundle.from_dict(resp["bundles"][0]) # type: ignore
def list_model_endpoints(self) -> List[Endpoint]:
"""
Lists all model endpoints that the user owns.
Returns:
A list of ``ModelEndpoint`` objects.
"""
resp = self.connection.get(ENDPOINT_PATH)
async_endpoints: List[Endpoint] = [
AsyncEndpoint(
model_endpoint=ModelEndpoint.from_dict(endpoint), # type: ignore
client=self,
)
for endpoint in resp["endpoints"]
if endpoint["endpoint_type"] == "async"
]
sync_endpoints: List[Endpoint] = [
SyncEndpoint(
model_endpoint=ModelEndpoint.from_dict(endpoint), client=self # type: ignore
)
for endpoint in resp["endpoints"]
if endpoint["endpoint_type"] == "sync"
]
return async_endpoints + sync_endpoints
def delete_model_bundle(self, model_bundle: Union[ModelBundle, str]):
"""
Deletes the model bundle.
Parameters:
model_bundle: A ``ModelBundle`` object or the name of a model bundle.
"""
bundle_name = _model_bundle_to_name(model_bundle)
route = f"model_bundle/{bundle_name}"
resp = self.connection.delete(route)
return resp["deleted"]
def delete_model_endpoint(self, model_endpoint: Union[ModelEndpoint, str]):
"""
Deletes a model endpoint.
Parameters:
model_endpoint: A ``ModelEndpoint`` object.
"""
endpoint_name = _model_endpoint_to_name(model_endpoint)
route = f"{ENDPOINT_PATH}/{endpoint_name}"
resp = self.connection.delete(route)
return resp["deleted"]
def read_endpoint_creation_logs(
self, model_endpoint: Union[ModelEndpoint, str]
):
"""
Retrieves the logs for the creation of the endpoint.
Parameters:
model_endpoint: The endpoint or its name.
"""
endpoint_name = _model_endpoint_to_name(model_endpoint)
route = f"{ENDPOINT_PATH}/creation_logs/{endpoint_name}"
resp = self.connection.get(route)
return resp["content"]
def _sync_request(
self,
endpoint_id: str,
url: Optional[str] = None,
args: Optional[Dict] = None,
return_pickled: bool = True,
) -> Dict[str, Any]:
"""
Not recommended for use, instead use functions provided by SyncEndpoint
Makes a request to the Sync Model Endpoint at endpoint_id, and blocks until request completion or timeout.
Endpoint at endpoint_id must be a SyncEndpoint, otherwise this request will fail.
Parameters:
endpoint_id: The id of the endpoint to make the request to
url: A url that points to a file containing model input.
Must be accessible by Scale Launch, hence it needs to either be public or a signedURL.
**Note**: the contents of the file located at ``url`` are opened as a sequence of ``bytes`` and passed
to the predict function. If you instead want to pass the url itself as an input to the predict function,
see ``args``.
args: A dictionary of arguments to the ``predict`` function defined in your model bundle.
Must be json-serializable, i.e. composed of ``str``, ``int``, ``float``, etc.
If your ``predict`` function has signature ``predict(foo, bar)``, then args should be a dictionary with
keys ``foo`` and ``bar``. Exactly one of ``url`` and ``args`` must be specified.
return_pickled: Whether the python object returned is pickled, or directly written to the file returned.
Returns:
A dictionary with key either ``"result_url"`` or ``"result"``, depending on the value
of ``return_pickled``. If ``return_pickled`` is true, the key will be ``"result_url"``,
and the value is a signedUrl that contains a cloudpickled Python object,
the result of running inference on the model input.
Example output:
``https://foo.s3.us-west-2.amazonaws.com/bar/baz/qux?xyzzy``
Otherwise, if ``return_pickled`` is false, the key will be ``"result"``,
and the value is the output of the endpoint's ``predict`` function, serialized as json.
"""
validate_task_request(url=url, args=args)
payload: Dict[str, Any] = dict(return_pickled=return_pickled)
if url is not None:
payload["url"] = url
if args is not None:
payload["args"] = args
resp = self.connection.post(
payload=payload,
route=f"{SYNC_TASK_PATH}/{endpoint_id}",
)
return resp
@deprecated(details="Use AsyncEndpoint.predict() instead")
def async_request(
self,
endpoint_name: str,
url: Optional[str] = None,
args: Optional[Dict] = None,
return_pickled: bool = True,
) -> str:
"""
Not recommended to use this, instead we recommend to use functions provided by AsyncEndpoint.
Makes a request to the Async Model Endpoint at endpoint_id, and immediately returns a key that can be used to retrieve
the result of inference at a later time.
Parameters:
endpoint_name: The name of the endpoint to make the request to
url: A url that points to a file containing model input.
Must be accessible by Scale Launch, hence it needs to either be public or a signedURL.
**Note**: the contents of the file located at ``url`` are opened as a sequence of ``bytes`` and passed
to the predict function. If you instead want to pass the url itself as an input to the predict function,
see ``args``.
Exactly one of ``url`` and ``args`` must be specified.
args: A dictionary of arguments to the ModelBundle's predict function.
Must be json-serializable, i.e. composed of ``str``, ``int``, ``float``, etc.
If your predict function has signature ``predict(foo, bar)``, then args should be a dictionary with
keys ``"foo"`` and ``"bar"``.
Exactly one of ``url`` and ``args`` must be specified.
return_pickled: Whether the python object returned is pickled, or directly written to the file returned.
Returns:
An id/key that can be used to fetch inference results at a later time.
Example output:
`abcabcab-cabc-abca-0123456789ab`
"""
return self._async_request(
endpoint_name=endpoint_name,
url=url,
args=args,
return_pickled=return_pickled,
)
def _async_request(
self,
endpoint_name: str,
url: Optional[str] = None,
args: Optional[Dict] = None,
return_pickled: bool = True,
) -> str:
"""
Makes a request to the Async Model Endpoint at endpoint_id, and immediately returns a key that can be used to retrieve
the result of inference at a later time.
Parameters:
endpoint_name: The name of the endpoint to make the request to
url: A url that points to a file containing model input.
Must be accessible by Scale Launch, hence it needs to either be public or a signedURL.
**Note**: the contents of the file located at ``url`` are opened as a sequence of ``bytes`` and passed
to the predict function. If you instead want to pass the url itself as an input to the predict function,