-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
193 lines (156 loc) · 9.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from torch import nn
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
def __init__(self,encoded_image_size=14):
super(Encoder,self).__init__()
self.enc_image_size = encoded_image_size
resnet = torchvision.models.resnet34(pretrained=True) # Pretrained resnet later
modules = list(resnet.children())[:-2] # Ignore the last two layers
self.resnet = nn.Sequential(*modules)
self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size)) # Fits any size
for p in self.resnet.parameters():
p.requires_grad = False
def forward(self, images):
out = self.resnet(images)
out = self.adaptive_pool(out)
out = out.permute(0,2,3,1) # Batch* d*e*e to batch*e*e*d, helps in attention
return out
class Attention(nn.Module):
def __init__(self, encoder_dim, decoder_dim, attention_dim):
super(Attention, self).__init__()
self.encoder_att = nn.Linear(encoder_dim, attention_dim)
self.decoder_att = nn.Linear(decoder_dim, attention_dim)
self.full_att = nn.Linear(attention_dim, 1) # Calculates the attention weights, on which later a softmax is applied
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, encoder_out, decoder_hidden):
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding
class DecoderWithAttention(nn.Module):
def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=512, dropout=0.5): # Change this to 2048 for 50
super(DecoderWithAttention, self).__init__()
self.attention_dim = attention_dim
self.encoder_dim = encoder_dim
self.embed_dim = embed_dim
self.decoder_dim = decoder_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
self.dropout = nn.Dropout(p=self.dropout)
self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True) # decoding LSTMCell
self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell
self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def init_weights(self): # intialise the weights
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def init_hidden_state(self, encoder_out): # intialise the hidden states
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out)
return h, c
def forward(self, encoder_out, encoded_captions, caption_lengths):
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# Initialize LSTM state
h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device) #FIXME: Think about this
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding = self.attention(encoder_out[:batch_size_t],
h[:batch_size_t])
gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
h, c = self.decode_step(
torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
(h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
return predictions, encoded_captions, decode_lengths, sort_ind
class DecoderWithAttention_justify(nn.Module):
def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=512, dropout=0.5): # Change this 2048 for 50
super(DecoderWithAttention_justify, self).__init__()
self.encoder_dim = encoder_dim
self.attention_dim = attention_dim
self.embed_dim = embed_dim
self.decoder_dim = decoder_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.class_emb_dim=512
self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
self.class_embedding = nn.Embedding(200,self.class_emb_dim)
self.dropout = nn.Dropout(p=self.dropout)
self.decode_step = nn.LSTMCell(embed_dim + encoder_dim + self.class_emb_dim, decoder_dim, bias=True) # decoding LSTMCell
self.init_h = nn.Linear(encoder_dim+self.class_emb_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell
self.init_c = nn.Linear(encoder_dim+self.class_emb_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def init_weights(self):
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.class_embedding.weight.data.uniform_(-0.1,0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def init_hidden_state(self, encoder_out,class_embedding):
mean_encoder_out = encoder_out.mean(dim=1)
mean_encoder_out=torch.cat([mean_encoder_out,class_embedding[:,0,:]],dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out)
return h, c
def forward(self, encoder_out, encoded_captions, caption_lengths,class_k):
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim) ?????????
# Initialize LSTM state
class_embedding=self.class_embedding(class_k)
h, c = self.init_hidden_state( encoder_out,class_embedding) # (batch_size, decoder_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding = self.attention(encoder_out[:batch_size_t], h[:batch_size_t])
gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
h, c = self.decode_step(
torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding,class_embedding[:batch_size_t,0,:]], dim=1),
(h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
return predictions, encoded_captions, decode_lengths, sort_ind