-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_MLP.py
272 lines (202 loc) · 8.49 KB
/
train_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import time
import logging
import argparse
import numpy as np
from typing import List
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import init_logger
from MLP import Net
from data import Data
device = "cuda"
class Args:
""" Env Params ------------------------------ """
num_agents: int = 0
""" Number of agents: To be filled later """
prob: float = 0.0
""" Probability of truncation: To be filled later """
corr: float = 0.00
""" Correlation Probability: To be filled later """
lambd: float = 0.00
""" Tradeoff param: To be filled later """
""" Neural Network Params -------------------- """
net_arch: List[int] = [256, 256, 256, 256, 256]
""" Neural Network Architecture """
act_fn = nn.LeakyReLU
""" Optimization Params ---------------------- """
batch_size: int = 1024
""" Batch size """
num_accums: int = 1
""" Num accumulation """
learning_rate: float = 5e-3
""" Learning Rate """
max_iteration: int = 50000
""" Max iterations """
""" Logging Params --------------------- """
print_iter: int = 100
val_iter: int = 1000
""" Frequency of logging train stats, validation stats """
save_iter: int = 1000
""" Frequency of saving models """
num_val_samples: int = 2560
""" Validation batch """
num_tst_samples: int = 20480
""" Number of Test batches """
""" Miscellaneous Params --------------------- """
seed: int = 42
""" Random Seed """
resume: bool = False
""" Start new (0) or resume (1) """
def torch_var(x):
return torch.Tensor(x).to(device)
""" Stability Violation """
def compute_st(r, p, q):
num_agents = r.size(1)
wp = F.relu(p[:, :, None, :] - p[:, :, :, None])
wq = F.relu(q[:, :, None, :] - q[:, None, :, :])
t = (1 - torch.sum(r, dim = 1, keepdim = True))
s = (1 - torch.sum(r, dim = 2, keepdim = True))
rgt_1 = torch.einsum('bjc,bijc->bic', r, wq) + t * F.relu(q)
rgt_2 = torch.einsum('bia,biac->bic', r, wp) + s * F.relu(p)
regret = rgt_1 * rgt_2
return regret.sum(-1).sum(-1).mean()/num_agents
""" IR Violation """
def compute_ir(r, p, q):
num_agents = r.size(1)
ir_1 = r * F.relu(-q)
ir_2 = r * F.relu(-p)
ir = ir_1 + ir_2
return ir.sum(-1).sum(-1).mean()/num_agents
""" IC Violation for a single agent"""
def compute_ic_single(r, p, q, P, Q, agent_idx, is_P):
num_agents = r.size(1)
P_mis, Q_mis = G.generate_all_misreports(P, Q, agent_idx, is_P)
p_mis, q_mis = torch_var(P_mis), torch_var(Q_mis)
r_mis = model(p_mis.view(-1, num_agents, num_agents), q_mis.view(-1, num_agents, num_agents))
r_mis = r_mis.view(*P_mis.shape)
if is_P:
r_diff = (r_mis[:, :, agent_idx, :] - r[:, None, agent_idx, :]) * (p[:, None, agent_idx, :] > 0).to(p.dtype)
_, idx = torch.sort(-p[:, agent_idx, :])
else:
r_diff = (r_mis[:, :, :, agent_idx] - r[:, None, :, agent_idx]) * (q[:, None, :, agent_idx] > 0).to(q.dtype)
_, idx = torch.sort(-q[:, :, agent_idx])
idx = idx[:, None, :].repeat(1, r_mis.size(1), 1)
fosd_viol = torch.cumsum(torch.gather(r_diff, -1, idx), -1)
IC_viol = F.relu(fosd_viol).max(-1)[0].max(-1)[0].mean(-1)
return IC_viol
""" IC Violation """
def compute_ic(r, p, q, P, Q):
num_agents = r.size(1)
IC_viol_P = torch.zeros(num_agents).to(device)
IC_viol_Q = torch.zeros(num_agents).to(device)
for agent_idx in range(num_agents):
IC_viol_P[agent_idx] = compute_ic_single(r, p, q, P, Q, agent_idx, is_P = True)
IC_viol_Q[agent_idx] = compute_ic_single(r, p, q, P, Q, agent_idx, is_P = False)
IC_viol = (IC_viol_P.mean() + IC_viol_Q.mean())/2
return IC_viol
def evaluate(model, G, batch_size, num_samples):
model.eval()
num_batches = num_samples//batch_size
with torch.no_grad():
val_st_loss = 0.0
val_ic_loss = 0.0
for j in range(num_batches):
P, Q = G.generate_batch(args.batch_size)
p, q = torch_var(P), torch_var(Q)
r = model(p, q)
st_loss = compute_st(r, p, q)
ic_loss = compute_ic(r, p, q, P, Q)
val_st_loss += st_loss.item()/num_batches
val_ic_loss += ic_loss.item()/num_batches
return val_st_loss, val_ic_loss
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--num_agents', action='store',
dest='num_agents', required=True, type=int,
help='Num Agents')
parser.add_argument('-p', '--prob', action='store',
dest='prob', required=True, type=float,
help='Truncation Probability')
parser.add_argument('-c', '--corr', action='store',
dest='corr', required=True, type=float,
help='Correlation Probability')
parser.add_argument('-l', '--lambd', action='store',
dest='lambd', required=True, type=float,
help='Lambda')
parser.add_argument('-r', '--resume', action='store',
dest='resume', default=0, type=int,
help='Resume Training')
cmd_args = parser.parse_args()
args = Args()
args.num_agents = cmd_args.num_agents
args.prob = cmd_args.prob
args.corr = cmd_args.corr
args.lambd = cmd_args.lambd
args.resume = (cmd_args.resume == 1)
""" Loggers """
root_dir = os.path.join("experiments", "agents_%d"%(args.num_agents), "corr_%.2f"%(args.corr), "MLP")
if not os.path.exists(root_dir):
os.makedirs(root_dir)
log_fname = os.path.join(root_dir, "LOG_lambd_%.4f"%(args.lambd))
if args.resume:
logger = init_logger(log_fname, filemode = 'a')
else:
logger = init_logger(log_fname)
model_path = os.path.join(root_dir, "CHECKPOINT_lambd_%.4f"%(args.lambd))
""" Seed for reproducibility """
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
G = Data(args.num_agents, args.prob, args.corr)
model = Net(args.net_arch, args.act_fn, args.num_agents).to(device)
opt = torch.optim.AdamW(model.parameters(), lr = args.learning_rate)
scheduler = torch.optim.lr_scheduler.MultiStepLR(opt, milestones=[10000,25000], gamma=0.5)
iteration = 0
if args.resume:
checkpoint = torch.load(model_path)
iteration = checkpoint['iteration']
model.load_state_dict(checkpoint['model'])
opt.load_state_dict(checkpoint['opt'])
scheduler.load_state_dict(checkpoint['scheduler'])
logger.info("*** Resuming Training ***")
# Trainer
tic = time.time()
while iteration < args.max_iteration:
# Reset opt
opt.zero_grad()
model.train()
# Inference
for _ in range(args.num_accums):
P, Q = G.generate_batch(args.batch_size)
p, q = torch_var(P), torch_var(Q)
r = model(p, q)
# Compute loss
st_loss = compute_st(r, p, q)
if args.lambd < 1.0:
ic_loss = compute_ic(r, p, q, P, Q)
else:
ic_loss = torch.tensor(0.0, device = device)
total_loss = (st_loss * args.lambd + ic_loss * (1 - args.lambd))/args.num_accums
total_loss.backward()
opt.step()
scheduler.step()
t_elapsed = time.time() - tic
iteration += 1
# Validation
if iteration % args.print_iter == 0 or iteration == args.max_iteration:
logger.info("[iter]: %d, [t]: %f, [stv]: %f, [rgt]: %f"%(iteration, t_elapsed, st_loss.item(), ic_loss.item()))
if iteration % args.save_iter == 0 or iteration == args.max_iteration:
checkpoint = dict()
checkpoint['iteration'] = iteration
checkpoint['model'] = model.state_dict()
checkpoint['opt'] = opt.state_dict()
checkpoint['scheduler'] = scheduler.state_dict()
torch.save(checkpoint, model_path)
if iteration % args.val_iter == 0 or iteration == args.max_iteration:
num_samples = args.num_tst_samples if iteration == args.max_iteration else args.num_val_samples
val_st_loss, val_ic_loss = evaluate(model, G, args.batch_size, num_samples)
logger.info("\t[TEST]: %d, [stv]: %f, [rgt]: %f"%(iteration, val_st_loss, val_ic_loss))