forked from GoogleCloudPlatform/python-docs-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeta_snippets.py
144 lines (116 loc) · 5.24 KB
/
beta_snippets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates enhanced models
and recognition metadata.
Example usage:
python beta_snippets.py enhanced-model resources/commercial_mono.wav
python beta_snippets.py metadata resources/commercial_mono.wav
python beta_snippets.py punctuation resources/commercial_mono.wav
"""
import argparse
import io
from google.cloud import speech_v1p1beta1 as speech
# [START speech_transcribe_file_with_enhanced_model]
def transcribe_file_with_enhanced_model(path):
"""Transcribe the given audio file using an enhanced model."""
client = speech.SpeechClient()
with io.open(path, 'rb') as audio_file:
content = audio_file.read()
audio = speech.types.RecognitionAudio(content=content)
config = speech.types.RecognitionConfig(
encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code='en-US',
# Enhanced models are only available to projects that
# opt in for audio data collection.
use_enhanced=True,
# A model must be specified to use enhanced model.
model='phone_call')
response = client.recognize(config, audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print('-' * 20)
print('First alternative of result {}'.format(i))
print('Transcript: {}'.format(alternative.transcript))
# [END speech_transcribe_file_with_enhanced_model]
# [START speech_transcribe_file_with_metadata]
def transcribe_file_with_metadata(path):
"""Send a request that includes recognition metadata."""
client = speech.SpeechClient()
with io.open(path, 'rb') as audio_file:
content = audio_file.read()
# Here we construct a recognition metadata object.
# Most metadata fields are specified as enums that can be found
# in speech.enums.RecognitionMetadata
metadata = speech.types.RecognitionMetadata()
metadata.interaction_type = (
speech.enums.RecognitionMetadata.InteractionType.DISCUSSION)
metadata.microphone_distance = (
speech.enums.RecognitionMetadata.MicrophoneDistance.NEARFIELD)
metadata.recording_device_type = (
speech.enums.RecognitionMetadata.RecordingDeviceType.SMARTPHONE)
# Some metadata fields are free form strings
metadata.recording_device_name = "Pixel 2 XL"
# And some are integers, for instance the 6 digit NAICS code
# https://www.naics.com/search/
metadata.industry_naics_code_of_audio = 519190
audio = speech.types.RecognitionAudio(content=content)
config = speech.types.RecognitionConfig(
encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code='en-US',
# Add this in the request to send metadata.
metadata=metadata)
response = client.recognize(config, audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print('-' * 20)
print('First alternative of result {}'.format(i))
print('Transcript: {}'.format(alternative.transcript))
# [END speech_transcribe_file_with_metadata]
# [START speech_transcribe_file_with_auto_punctuation]
def transcribe_file_with_auto_punctuation(path):
"""Transcribe the given audio file with auto punctuation enabled."""
client = speech.SpeechClient()
with io.open(path, 'rb') as audio_file:
content = audio_file.read()
audio = speech.types.RecognitionAudio(content=content)
config = speech.types.RecognitionConfig(
encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code='en-US',
# Enable automatic punctuation
enable_automatic_punctuation=True)
response = client.recognize(config, audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print('-' * 20)
print('First alternative of result {}'.format(i))
print('Transcript: {}'.format(alternative.transcript))
# [END speech_transcribe_file_with_auto_punctuation]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('command')
parser.add_argument(
'path', help='File for audio file to be recognized')
args = parser.parse_args()
if args.command == 'enhanced-model':
transcribe_file_with_enhanced_model(args.path)
elif args.command == 'metadata':
transcribe_file_with_metadata(args.path)
elif args.command == 'punctuation':
transcribe_file_with_auto_punctuation(args.path)