-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspark_job_handler.py
282 lines (266 loc) · 13.3 KB
/
spark_job_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import settings
import ntpath
import requests
import json
import os
import os.path
''' This is the implemenattion of a spark Job Handler '''
class SparkJobHandler( object ):
# SparkJobHandlerImpl
# logger : The logger object
# job_name : the name of the job
# jar : the remote jar path
# run_class : the entry point of the spark job
# hadoop_rm : the ip address of the hadoop rm
# hadoop_web_hdfs : the ip address of the hdfs web api
# hadoop_nn : the ip address of the hadoop name node
# env_type: The Spark Running ENV type (CDH or HDP)
# local_jar : Id the jar path provided is local
# spark_properties : spark properties values
def __init__(self, logger, job_name, jar, run_class, hadoop_rm,
hadoop_web_hdfs, hadoop_nn, env_type="CDH" ,local_jar=False, spark_properties=None):
self.logger = logger
self.job_name = job_name
self.spark_project_folder = settings.SPARK_PROJECT_FOLDER
self.jar = jar
self.run_class = run_class
self.hadoop_rm = settings.HADOOP_RESOURCE_MANAGER_PATH % hadoop_rm
self.hadoop_web_hdfs = settings.HADOOP_WEB_HDFS_PATH % hadoop_web_hdfs
self.hadoop_nn = settings.HADOOP_NAME_NODE_PATH % hadoop_nn
self.hadoop_uri_auth = settings.HADOOP_URI_AUTH
self.hadoop_uri_uname = settings.HADOOP_URI_UNAME
self.hadoop_uri_pass = settings.HADOOP_URI_PASS
self.hdfs_access_uname = settings.HDFS_ACCESS_UNAME
self.spark_properties = settings.SPARK_DEFAULT_PROPERTIES
self.spark_properties_name = settings.SPARK_PROPERTY_FILE_NAME
self.spark_jar_path = settings.SPARK_JAR_LOCATION[env_type]["common"]
self.local_jar = local_jar
self.env_type = env_type
if spark_properties is not None:
for key in spark_properties:
self.spark_properties[key] = spark_properties[key]
def _createHdfsPath(self, path):
return os.path.join("hdfs://", self.hadoop_nn, path.strip("/"))
def _webhdfsGetRequest(self, path, op, allow_redirects=False):
url = os.path.join(self.hadoop_web_hdfs, path.strip("/"))
response = requests.get("%s?op=%s" % (url, op), allow_redirects=allow_redirects, verify=self.hadoop_uri_auth, auth=(self.hadoop_uri_uname, self.hadoop_uri_pass))
return response.json()
def _webhdfsPutRequest(self, path, op, allow_redirects=False):
url = os.path.join(self.hadoop_web_hdfs, path.strip("/"))
response = requests.put("%s?op=%s" % (url, op), "", allow_redirects=allow_redirects, verify=self.hadoop_uri_auth, auth=(self.hadoop_uri_uname, self.hadoop_uri_pass))
return response
def _pathExists(self, path):
response = self._webhdfsGetRequest(path, "GETFILESTATUS")
return (response.has_key("FileStatus"), response)
def _createDir(self, path):
response = self._webhdfsPutRequest(path, "MKDIRS").json()
return (response.has_key("boolean") and response["boolean"], response)
def _uploadFile(self, data, remoteFile, overwrite="true"):
response = self._webhdfsPutRequest(remoteFile, "CREATE&overwrite=%s" % overwrite)
location = response.headers.get("Location")
if location:
response = requests.put(location, data, verify=self.hadoop_uri_auth, auth=(self.hadoop_uri_uname, self.hadoop_uri_pass))
return (True, response.text)
return(False, "")
def _createCacheValue(self, path, size, timestamp):
return {
"resource": self._createHdfsPath(path),
"type": "FILE",
"visibility": "APPLICATION",
"size": size,
"timestamp": timestamp
}
def _createNewApplication(self):
url = os.path.join(self.hadoop_rm, "cluster/apps/new-application")
response = requests.post(url, "", verify=self.hadoop_uri_auth, auth=(self.hadoop_uri_uname, self.hadoop_uri_pass))
return (True, response.json())
def _submitSparkJob(self, sparkJson):
url = os.path.join(self.hadoop_rm, "cluster/apps")
response = requests.post(url, sparkJson, headers={"Content-Type": "application/json"}, verify=self.hadoop_uri_auth, auth=(self.hadoop_uri_uname, self.hadoop_uri_pass))
return response
def _getFileName(self, path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
# Method to run the SparkJob
def run(self):
# Check if the remote spark assembly exists
ret = self._pathExists(self.spark_jar_path)
if not ret[0]: raise Exception("Spark jar (spark_assembly.jar) not found: " + ret[1])
sparkJarFileStatus = ret[1]["FileStatus"]
# Check if the project folder is created
if not self._pathExists(self.spark_project_folder):
ret = self._createDir(self.spark_project_folder)
if not ret[0]: raise Exception("Falied to create exception: " + json.dumps(ret[1]))
appJarFileStatus = None
remoteJarLocation = self.jar
# In case of local jar copy the jar to the hdfs
if self.local_jar:
# Local jar gets copied in a project specific location
remoteJarLocation = os.path.join(self.spark_project_folder, self.job_name, self._getFileName(self.jar))
# Open the lcoal file TODO: handle Exception
fd = open(self.jar, "rb")
ret = self._uploadFile(fd, remoteJarLocation)
if not ret[0]: raise Exception("Falied to upload local jar file: " + str(ret[1]))
ret = self._pathExists(remoteJarLocation)
appJarFileStatus = ret[1]["FileStatus"]
else:
# check if the jar is present in the HDFS
ret = self._pathExists(remoteJarLocation)
if not ret[0]: raise Exception("HDFS path doesn't exist: " + str(ret[1]))
appJarFileStatus = ret[1]["FileStatus"]
# Create and upload spark properties
spark_properties_data = ""
for key in self.spark_properties:
spark_properties_data = spark_properties_data + "\n" + key + "=" + self.spark_properties[key]
remoteSparkProperties = os.path.join(self.spark_project_folder, self.job_name, self.spark_properties_name)
ret = self._uploadFile(spark_properties_data, remoteSparkProperties)
if not ret[0]: raise Exception("Falied to upload local spark properties file: " + str(ret[1]))
ret = self._pathExists(remoteSparkProperties)
sparkPropertiesFileStatus = ret[1]["FileStatus"]
# Create new Hadoop application for spark
yarnApp = self._createNewApplication()
if not yarnApp[0]: raise Exception("Failed to create a new application to Hadoop resource manager: " + str(ret[1]))
commands = {}
environment = {}
application_type = {}
# Define spark Job based on env_typr
if self.env_type == 'CDH':
command = {
"command" : settings.SPARK_CDH_EXECUTION_COMMAND % (self.job_name, self.run_class, self.job_name)
}
application_type = "SPARK"
environment = {
"entry":
[
{
"key": "SPARK_USER",
"value": "%s" % settings.HDFS_ACCESS_UNAME
},
{
"key": "HADOOP_USER_NAME",
"value": "%s" % settings.HDFS_ACCESS_UNAME
},
{
"key": "SPARK_YARN_STAGING_DIR",
"value": ".sparkStaging/%s" % self.job_name
},
{
"key": "SPARK_YARN_MODE",
"value": True
},
{
"key": "user.name",
"value": "%s" % settings.HDFS_ACCESS_UNAME
},
{
"key": "CLASSPATH",
"value": settings.SPARK_CDH_JOB_CLASSPATH
},
{
"key": "SPARK_YARN_CACHE_FILES",
"value": "%s#__app__.jar,%s#__spark__.jar" % (self._createHdfsPath(remoteJarLocation), self._createHdfsPath(self.spark_jar_path))
},
{
"key": "SPARK_YARN_CACHE_FILES_FILE_SIZES",
"value": "%d,%d" % (appJarFileStatus["length"], sparkJarFileStatus["length"])
},
{
"key": "SPARK_YARN_CACHE_FILES_TIME_STAMPS",
"value": "%d,%d" % (appJarFileStatus["modificationTime"], sparkJarFileStatus["modificationTime"])
},
{
"key": "SPARK_YARN_CACHE_FILES_VISIBILITIES",
"value": "PUBLIC,PRIVATE"
},
{
"key": "LD_LIBRARY_PATH",
"value": "{{HADOOP_COMMON_HOME}}/../../../" + settings.CDH_VERSION + "/lib/hadoop/lib/native:$LD_LIBRARY_PATH"
}
]
}
elif self.env_type == 'HDP':
command = {
"command" : settings.SPARK_HDP_EXECUTION_COMMAND % (settings.HDP_VERSION, self.job_name, self.run_class, self.job_name)
}
application_type = "YARN"
environment = {
"entry":
[
{
"key": "HADOOP_USER_NAME",
"value": "%s" % settings.HDFS_ACCESS_UNAME
},
{
"key": "HDP_VERSION",
"value": "%s" % settings.HDP_VERSION
},
{
"key": "SPARK_YARN_MODE",
"value": True
},
{
"key": "user.name",
"value": "%s" % settings.HDFS_ACCESS_UNAME
},
{
"key": "CLASSPATH",
"value": settings.SPARK_HDP_JOB_CLASSPATH
},
{
"key": "SPARK_YARN_CACHE_FILES",
"value": "%s#__app__.jar,%s#__spark__.jar" % (self._createHdfsPath(remoteJarLocation), self._createHdfsPath(self.spark_jar_path))
},
{
"key": "SPARK_YARN_CACHE_FILES_FILE_SIZES",
"value": "%d,%d" % (appJarFileStatus["length"], sparkJarFileStatus["length"])
},
{
"key": "SPARK_YARN_CACHE_FILES_TIME_STAMPS",
"value": "%d,%d" % (appJarFileStatus["modificationTime"], sparkJarFileStatus["modificationTime"])
},
{
"key": "SPARK_YARN_CACHE_FILES_VISIBILITIES",
"value": "PUBLIC,PRIVATE"
}
]
}
else:
raise Exception("Falied to run job: Invalid env_type: " + self.env_type)
# Create spark Job definition
sparkJob = {
"application-id": yarnApp[1]["application-id"],
"application-name": self.job_name,
"am-container-spec": {
"local-resources": {
"entry":[
{
"key": "__spark__.jar",
"value": self._createCacheValue(self.spark_jar_path, sparkJarFileStatus["length"], sparkJarFileStatus["modificationTime"])
},
{
"key": "__app__.jar",
"value": self._createCacheValue(remoteJarLocation, appJarFileStatus["length"], appJarFileStatus["modificationTime"])
},
{
"key": "__app__.properties",
"value": self._createCacheValue(remoteSparkProperties, sparkPropertiesFileStatus["length"], sparkPropertiesFileStatus["modificationTime"])
}
]
},
"commands": command,
"environment": environment
},
"unmanaged-AM": False,
"max-app-attempts": settings.HADOOP_MAX_JOB_SUBMIT_ATTEMPT,
"resource": {
"memory": settings.HADOOP_APP_MASTER_MEMORY,
"vCores": settings.HADOOP_APP_MASTER_CORE
},
"application-type": application_type,
"keep-containers-across-application-attempts": False
}
# Submit the spark Job
sparkJobJson = json.dumps(sparkJob, indent=2, sort_keys=True)
response = self._submitSparkJob(sparkJobJson)
trackingUrl = response.headers["Location"].replace("apps//", "apps/")
return trackingUrl