forked from jw9730/setvae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_and_test_all.py
139 lines (110 loc) · 4.58 KB
/
sample_and_test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from pprint import pprint
from pathlib import Path
import requests
import json
import random
import torch
import numpy as np
from tqdm import tqdm
from args import get_args
from datasets import get_datasets
from datasets.ShapeNet import collate_fn
from utils import set_random_seed
from models.networks import SetVAE
from metrics import compute_all_metrics, jsd_between_point_cloud_sets as JSD
def spreadsheet_format(result_dict):
msg = ''
keys = ['1-NN-CD-acc', '1-NN-EMD-acc', 'lgan_cov-CD', 'lgan_cov-EMD', 'lgan_mmd-CD', 'lgan_mmd-EMD']
for key in keys:
msg += f'{result_dict[key]},'
return msg
def get_test_loader(args):
train_dataset, val_dataset, _, _ = get_datasets(args)
if args.resume_dataset_mean is not None and args.resume_dataset_std is not None:
mean = np.load(args.resume_dataset_mean)
std = np.load(args.resume_dataset_std)
val_dataset.renormalize(mean, std)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn,
num_workers=0, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(
dataset=val_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn,
num_workers=0, pin_memory=True, drop_last=False)
return train_loader, val_loader
def evaluate_gen(model, args):
all_sample = list()
all_ref = list()
train_loader, val_loader = get_test_loader(args)
save_dir = os.path.dirname(args.resume_checkpoint)
save_dir = save_dir + '/train_offset' if args.eval_with_train_offset else save_dir
iterator = iter(val_loader)
n_batch = len(iterator)
aux_iterator = list(iter(train_loader))[:n_batch]
for data, data_aux in tqdm(zip(iterator, aux_iterator), total=n_batch):
idx_b, gt, gt_mask, gt_c = data['idx'], data['set'], data['set_mask'], data['cardinality']
gt = gt.cuda()
gt_mask = gt_mask.cuda()
gt_c = gt_c.cuda()
output = model.sample(gt_c)
gen, gen_mask = output['set'], output['set_mask']
gen = gen[~gen_mask].reshape(gt.shape)
# denormalize
m, s = data['mean'].float(), data['std'].float()
m = m.cuda()
s = s.cuda()
if args.standardize_per_shape:
if args.eval_with_train_offset:
offset = data_aux['offset'][:len(gt)]
else:
offset = data['offset']
gt = gt + offset.to(gt.device)
gen = gen + offset.to(gen.device)
gt = gt * s + m
gen = gen * s + m
all_sample.append(gen)
all_ref.append(gt)
all_sample = torch.cat(all_sample, 0)
all_ref = torch.cat(all_ref, 0)
print(f"[rank {args.rank}] Generation Sample size:{all_sample.size()} Ref size: {all_ref.size()}")
# Save the generative output
npy_path = Path(save_dir) / f"{args.seed}-{args.epochs - 1}"
npy_path.mkdir(parents=True, exist_ok=True)
smp_pcs_save_name = npy_path / f"emd_out_smp.npy"
ref_pcs_save_name = npy_path / f"emd_out_ref.npy"
np.save(smp_pcs_save_name, all_sample.cpu().detach().numpy())
np.save(ref_pcs_save_name, all_ref.cpu().detach().numpy())
print(f"Saving file: {smp_pcs_save_name} {ref_pcs_save_name}")
print("Evaluation start")
results = compute_all_metrics(all_sample, all_ref, 128, accelerated_cd=True)
results = {k: (v.cpu().detach().item() if not isinstance(v, float) else v) for k, v in results.items()}
sample_pcl_npy = all_sample.cpu().detach().numpy()
ref_pcl_npy = all_ref.cpu().detach().numpy()
jsd = JSD(sample_pcl_npy, ref_pcl_npy)
results.update({'JSD': jsd})
pprint(results)
return results
def main(args):
model = SetVAE(args)
model = model.cuda()
save_dir = Path(args.log_dir) / "checkpoints" / args.model_name
args.resume_checkpoint = os.path.join(save_dir, f'checkpoint-{args.epochs - 1}.pt')
print("Evaluate Path:{}, ".format(args.resume_checkpoint))
checkpoint = torch.load(args.resume_checkpoint)
model.load_state_dict(checkpoint['model'])
if args.seed is None:
args.seed = random.randint(0, 1000000)
set_random_seed(args.seed)
if args.bn_mode == 'eval':
model.eval()
else:
model.train()
print(f"{args.resume_checkpoint}_{args.seed} START")
with torch.no_grad():
results = evaluate_gen(model, args)
print(f"{args.resume_checkpoint}_{args.seed}" + json.dumps(results, indent=4, sort_keys=True))
print(spreadsheet_format(results))
if __name__ == '__main__':
args = get_args()
# print(args)
main(args)