forked from jw9730/setvae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
206 lines (180 loc) · 9.41 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import math
import time
import matplotlib.pyplot as plt
import torch
import numpy as np
from utils import validate_reconstruct, validate_reconstruct_l2, validate_sample, \
visualize_reconstruct, visualize_sample, visualize_mix, visualize_interpolate, AverageValueMeter
def train_one_epoch(epoch, model, criterion, optimizer, args, train_loader, avg_meters, logger):
start_time = time.time()
model.train()
criterion.train()
beta = None
for bidx, data in enumerate(train_loader):
step = bidx + len(train_loader) * epoch
gt, gt_mask = data['set'], data['set_mask']
gt = gt.cuda(non_blocking=True)
gt_mask = gt_mask.cuda(non_blocking=True)
output = model(gt, gt_mask)
losses = criterion(output, gt, gt_mask, args, epoch)
loss, kl_loss, l2_loss, topdown_kl, beta = losses['loss'], losses['kl'], losses['l2'], losses['topdown_kl'], losses['beta']
model.optimizer.zero_grad()
model.backward(loss)
# compute gradient norm
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
if logger is not None and total_norm > 1000:
logger.add_scalar('grad_norm', total_norm, step)
if args.max_grad_threshold is not None:
if total_norm < args.max_grad_threshold:
model.optimizer.step()
else:
model.optimizer.step()
# Only main process writes logs.
avg_meters['kl_avg_meter'].update(kl_loss.detach().item(), data['set'].size(0))
avg_meters['l2_avg_meter'].update(l2_loss.detach().item(), data['set'].size(0))
avg_meters['totalloss_avg_meter'].update(loss.detach().item(), data['set'].size(0))
if step % args.log_freq == 0:
duration = time.time() - start_time
start_time = time.time()
print("[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Loss %2.5f KL %2.5f L2 %2.5f"
% (args.local_rank, epoch, bidx, len(train_loader), duration,
loss.detach().item(), kl_loss.detach().item(), l2_loss.detach().item()))
if logger is not None:
logger.add_scalar('train kl loss', kl_loss.detach().item(), step)
logger.add_scalar('train l2 loss', l2_loss.detach().item(), step)
logger.add_scalar('train total loss', loss.detach().item(), step)
logger.add_scalar('grad_norm', total_norm, step)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot([kl_per_dim.detach().item() for kl_per_dim in topdown_kl])
logger.add_figure('train top-down kl', fig, step)
plt.close(fig)
# assert after logging and optimizing to sync subprocesses
kl_finite = math.isfinite(kl_loss.detach().item())
l2_finite = math.isfinite(l2_loss.detach().item())
loss_finite = math.isfinite(loss.detach().item())
assert kl_finite
assert l2_finite
assert loss_finite
if logger is not None:
logger.add_scalar('train kl loss (epoch)', avg_meters['kl_avg_meter'].avg, epoch)
logger.add_scalar('train l2 loss (epoch)', avg_meters['l2_avg_meter'].avg, epoch)
logger.add_scalar('train total loss (epoch)', avg_meters['totalloss_avg_meter'].avg, epoch)
logger.add_scalar('beta (epoch)', beta, epoch)
avg_meters['kl_avg_meter'].reset()
avg_meters['l2_avg_meter'].reset()
avg_meters['totalloss_avg_meter'].reset()
def train_one_epoch_supervised(epoch, model, criterion, args, train_loader, avg_meters, logger):
start_time = time.time()
model.train()
for bidx, data in enumerate(train_loader):
step = bidx + len(train_loader) * epoch
bsize = data['set'].size(0)
output = model(data['set'].cuda(), data['set_mask'].cuda())
preds = output['predictions']
# prepare categorical targets for cross entropy loss
target_classes, targets = np.unique(data['mid'], return_inverse=True)
loss = criterion(preds, torch.tensor(targets).squeeze().cuda())
acc = torch.sum(torch.argmax(preds, dim=1) == torch.tensor(targets).squeeze().cuda())/len(torch.argmax(preds, dim=1) == torch.tensor(targets).squeeze().cuda())
model.optimizer.zero_grad()
model.backward(loss)
# compute gradient norm
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
if logger is not None and total_norm > 1000:
logger.add_scalar('grad_norm', total_norm, step)
if args.max_grad_threshold is not None:
if total_norm < args.max_grad_threshold:
model.optimizer.step()
else:
model.optimizer.step()
# Only main process writes logs.
avg_meters['acc_avg_meter'].update(acc.detach().item(), bsize)
avg_meters['loss_avg_meter'].update(loss.detach().item(), bsize)
if step % args.log_freq == 0:
duration = time.time() - start_time
start_time = time.time()
print("[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Acc %2.5f Loss %2.5f"
% (args.local_rank, epoch, bidx, len(train_loader), duration, acc.detach().item(),
loss.detach().item()))
if logger is not None:
logger.add_scalar('train x-ent loss (step)', loss.detach().item(), step)
logger.add_scalar('train acc (step)', acc.detach().item(), step)
logger.add_scalar('grad_norm', total_norm, step)
# assert after logging and optimizing to sync subprocesses
loss_finite = math.isfinite(loss.detach().item())
assert loss_finite
if logger is not None:
logger.add_scalar('train acc (epoch)', avg_meters['acc_avg_meter'].avg, epoch)
logger.add_scalar('train x-ent loss (epoch)', avg_meters['loss_avg_meter'].avg, epoch)
avg_meters['acc_avg_meter'].reset()
avg_meters['loss_avg_meter'].reset()
def validate(model, args, val_loader, epoch, criterion, logger, save_dir):
model.eval()
with torch.no_grad():
#val_res = validate_reconstruct(val_loader, model, args, args.max_validate_shapes, save_dir) #orig code used this line; broke on rnaseq data due to unmask() function
val_res = validate_reconstruct_l2(epoch, val_loader, model, criterion, args, logger)
for k, v in val_res.items():
if not isinstance(v, float):
v = v.cpu().detach().item()
if logger is not None and v is not None:
logger.add_scalar(f'val_reconstruct/{k}', v, epoch)
if not args.val_recon_only:
val_sample_res = validate_sample(val_loader, model, args, args.max_validate_shapes, save_dir)
for k, v in val_sample_res.items():
if not isinstance(v, float):
v = v.cpu().detach().item()
if logger is not None and v is not None:
logger.add_scalar(f'val_sample/{k}', v, epoch)
val_res.update(val_sample_res)
return val_res
def validate_supervised(model, args, val_loader, epoch, criterion, logger):
model.eval()
start_time = time.time()
acc_meter = AverageValueMeter()
loss_meter = AverageValueMeter()
for bidx, data in enumerate(val_loader):
bsize = data['set'].size(0)
output = model(data['set'].cuda(), data['set_mask'].cuda())
preds = output['predictions']
target_classes, targets = np.unique(data['mid'], return_inverse=True)
loss = criterion(preds, torch.tensor(targets).squeeze().cuda())
acc = torch.sum(torch.argmax(preds, dim=1) == torch.tensor(targets).squeeze().cuda())/len(torch.argmax(preds, dim=1) == torch.tensor(targets).squeeze().cuda())
"""
# compute gradient norm
total_norm = 0.
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
if logger is not None and total_norm > 1000:
logger.add_scalar('grad_norm', total_norm, step)
"""
# Only main process writes logs.
acc_meter.update(acc.detach().item(), bsize)
loss_meter.update(loss.detach().item(), bsize)
# assert after logging and optimizing to sync subprocesses
loss_finite = math.isfinite(loss.detach().item())
assert loss_finite
# log val set stats for this epoch
duration = time.time() - start_time
print("[Rank %d] <VAL> Epoch %d Batch [%2d/%2d] Time [%3.2fs] Acc %2.5f Loss %2.5f"
% (args.local_rank, epoch, bidx, len(val_loader), duration, acc_meter.avg, loss_meter.avg))
if logger is not None:
logger.add_scalar('val acc (epoch)', acc_meter.avg, epoch)
logger.add_scalar('val x-ent loss (epoch)', loss_meter.avg, epoch)
return {'val_acc': acc_meter.avg, 'val_loss': loss_meter.avg}
def visualize(model, args, val_loader, epoch, logger):
model.eval()
with torch.no_grad():
visualize_reconstruct(val_loader, model, args, logger, epoch)
visualize_sample(val_loader, model, args, logger, epoch)
visualize_interpolate(val_loader, model, args, logger, epoch)
visualize_mix(val_loader, model, args, logger, epoch)