forked from apple/ml-finerecon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (67 loc) · 2.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import os
import shutil
import box
import pytorch_lightning as pl
import torch
import yaml
import data
import fine_recon
import utils
def load_config(config_fname):
with open(config_fname, "r") as f:
config = box.Box(yaml.safe_load(f))
n_gpus = torch.cuda.device_count()
if n_gpus > 0:
config.accelerator = "gpu"
config.n_devices = n_gpus
else:
config.accelerator = "cpu"
config.n_devices = 1
return config
@pl.utilities.rank_zero_only
def zip_code(save_dir):
os.system(f"zip {save_dir}/code.zip *.py config.yml")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="config.yml")
parser.add_argument(
"--task", default="train", choices=["train", "predict", "find_lr"]
)
parser.add_argument("--ckpt")
args = parser.parse_args()
if args.ckpt is not None:
shutil.copy(args.ckpt, args.ckpt + ".bak")
config = load_config(args.config)
if args.task == "predict":
config.n_devices = 1
model = fine_recon.FineRecon(config)
logger = pl.loggers.TensorBoardLogger(save_dir=".", version=config.run_name)
logger.experiment
zip_code(logger.experiment.log_dir)
trainer = pl.Trainer(
logger=logger,
accelerator=config.accelerator,
devices=config.n_devices,
max_steps=config.steps,
log_every_n_steps=50,
precision=16,
strategy="ddp" if config.n_devices > 1 else None,
callbacks=[
pl.callbacks.ModelCheckpoint(monitor="loss_val/loss", save_top_k=10)
],
)
if args.task == "train":
trainer.fit(model, ckpt_path=args.ckpt)
elif args.task == "find_lr":
tuner = pl.tuner.Tuner(trainer)
model.lr = model.config.initial_lr
lr_finder = tuner.lr_find(
model, train_dataloaders=model.train_dataloader(), val_dataloaders=[]
)
fig = lr_finder.plot(suggest=True)
fig.savefig("lr.png")
elif args.task == "predict":
trainer.predict(model, ckpt_path=args.ckpt)
else:
raise NotImplementedError