-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_lstm.py
229 lines (184 loc) · 8.47 KB
/
keras_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#from torch.utils.data import DataLoader, TensorDataset
#from torch.cuda import is_available
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from preprocess import rename_columns, swap_missing_data, interpolate_missing_values, split_data, date_and_hour, calculate_mape, add_holiday_variable, create_lagged_variables
# Import necessary libraries
import tensorflow as tf
import tensorflow_addons as tfa
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.metrics import mean_absolute_percentage_error
from sklearn.metrics import mean_absolute_error
from keras import Sequential
from keras import layers
from keras.models import Model
from keras.layers import LSTM, BatchNormalization, Dropout, Dense, Flatten, Conv1D
from keras.layers import MaxPooling1D, GRU, Input,Masking, Concatenate, dot
from keras.optimizers import Adam, SGD
from keras.losses import MeanAbsoluteError
from keras.metrics import RootMeanSquaredError
from keras.callbacks import EarlyStopping
from keras.callbacks import LearningRateScheduler
#rename column headers
column_mapping = {
'Time': 'datetime',
'Current demand': 'caiso_load_actuals',
'KCASANFR698_Temperature': 'SF_temp',
'KCASANFR698_Dew_Point':'SF_dew',
'KCASANFR698_Humidity':'SF_humidity',
'KCASANFR698_Speed':'SF_windspeed',
'KCASANFR698_Gust':'SF_windgust',
'KCASANFR698_Pressure':'SF_pressure',
'KCASANJO17_Temperature': 'SJ_temp',
'KCASANJO17_Dew_Point':'SJ_dew',
'KCASANJO17_Humidity':'SJ_humidity',
'KCASANJO17_Speed':'SJ_windspeed',
'KCASANJO17_Gust':'SJ_windgust',
'KCASANJO17_Pressure':'SJ_pressure',
'KCABAKER271_Temperature': 'BAKE_temp',
'KCABAKER271_Humidity':'BAKE_humidity',
'KCABAKER271_Speed':'BAKE_windspeed',
'KCABAKER271_Pressure':'BAKE_pressure',
'KCAELSEG23_Temperature': 'EL_temp',
'KCAELSEG23_Dew_Point':'EL_dew',
'KCAELSEG23_Humidity':'EL_humidity',
'KCAELSEG23_Speed':'EL_windspeed',
'KCAELSEG23_Gust':'EL_windgust',
'KCAELSEG23_Pressure':'EL_pressure',
'KCARIVER117_Temperature': 'RIV_temp',
'KCARIVER117_Dew_Point':'RIV_dew',
'KCARIVER117_Humidity':'RIV_humidity',
'KCARIVER117_Speed':'RIV_windspeed',
'KCARIVER117_Gust':'RIV_windgust',
'KCARIVER117_Pressure':'RIV_pressure'
}
# Columns for swap missing NaN data between SF and SJ
sf_columns = [
'KCASANFR698_Temperature', 'KCASANFR698_Dew_Point', 'KCASANFR698_Humidity',
'KCASANFR698_Speed', 'KCASANFR698_Gust', 'KCASANFR698_Pressure'
]
sj_columns = [
'KCASANJO17_Temperature', 'KCASANJO17_Dew_Point', 'KCASANJO17_Humidity',
'KCASANJO17_Speed', 'KCASANJO17_Gust', 'KCASANJO17_Pressure'
]
# Specify the date ranges
train_start_date = pd.to_datetime('2021-01-02')
train_end_date = pd.to_datetime('2023-10-03')
predict_start_date = train_end_date + pd.Timedelta(days=1)
predict_end_date = predict_start_date + pd.Timedelta(hours=24)
# Assuming you want date objects
train_start_date_date = train_start_date.date()
train_end_date_date = train_end_date.date()
# Load and preprocess data
path = 'C:/Users/~/' #update with your local path
merged_df = pd.read_csv(path + 'data.csv')
merged_df = swap_missing_data(merged_df, sf_columns, sj_columns) #Swap SF and SJ weather data for NaN values
merged_df = interpolate_missing_values(merged_df) # Interpolate missing values
data = rename_columns(merged_df, column_mapping) #renames the column headers
#date_and_hour(data)
data = add_holiday_variable(data, 'datetime', train_start_date, train_end_date) # Add holiday variable
data = create_lagged_variables(data, 'caiso_load_actuals', lag_range=7) # Create lagged variables
#filter train/test data for start/end dates
df = data[(data['datetime'] >= train_start_date) & (data['datetime'] <= train_end_date + pd.Timedelta(days=1))]
# Split data into features and target
X = df.drop(['datetime','caiso_load_actuals'], axis=1).values
y = df['caiso_load_actuals'].values
#Training
def apply_PCA(X_input, cum_variance, if_apply):
if if_apply:
pca = PCA(n_components = cum_variance)
# make pipeline to first standardize then apply PCA on data
scaler_pca = make_pipeline(MinMaxScaler(), pca)
X_pca = scaler_pca.fit(X_input).transform(X_input)
return X_pca
else:
return np.array(X_input)
params_pca = {'cum_variance' : 0.8, 'if_apply' : True }
X_pca = apply_PCA(X, **params_pca)
X_pca.shape
def windowing(X_input,y_input, history_size):
data = []
labels = []
for i in range(history_size, len(y_input)):
data.append(X_input[i - history_size : i, :])
labels.append(y_input[i])
return np.array(data), np.array(labels).reshape(-1,1)
train_cutoff = int(0.8*X_pca.shape[0])
val_cutoff = int(0.9*X_pca.shape[0])
scaler_y = MinMaxScaler()
scaler_y.fit(y[:train_cutoff].reshape(-1,1))
y_norm = scaler_y.transform(y.reshape(-1,1))
hist_size= 24
data_norm = np.concatenate((X_pca,y_norm), axis = 1)
X_train, y_train = windowing(data_norm[:train_cutoff,:],data_norm[:train_cutoff,-1], hist_size)
X_val, y_val = windowing(data_norm[train_cutoff :val_cutoff,:],data_norm[train_cutoff:val_cutoff,-1], hist_size)
X_test, y_test = windowing(data_norm[val_cutoff :,:],data_norm[val_cutoff:,-1], hist_size)
##Training##
def base_model_lstm():
model = Sequential()
model.add(LSTM(units = 32, return_sequences = True, activation="relu", input_shape = X_train.shape[-2:]))
model.add(Flatten())
model.add(Dense(units=128, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1))
return model
epoch = 50
batch_size = 64
steps_per_epoch = len(X_train) // batch_size
cyclic_lr = tfa.optimizers.CyclicalLearningRate(initial_learning_rate=1e-04,
maximal_learning_rate=1e-02,
scale_fn=lambda x: 1/(2**(x-1)),
step_size=6 * steps_per_epoch)
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=8)
optimizer = Adam(learning_rate=cyclic_lr, amsgrad=True)
lstm_model = base_model_lstm()
lstm_model.compile(optimizer = optimizer, loss = 'mean_absolute_error')
lstm_model.summary()
history = lstm_model.fit(X_train, y_train, validation_data = (X_val, y_val), epochs =epoch,
batch_size = batch_size, callbacks=[callback])
##Prediction##
y_pred = lstm_model.predict(X_test)
y_pred_actual = scaler_y.inverse_transform(y_pred.reshape(-1,1))
y_test_inv = scaler_y.inverse_transform(y_test)
# Calculate MAPE using the predicted and actual values
mape = np.abs(y_test_inv - y_pred_actual) / np.abs(y_test_inv) * 100
def plot_results(y_pred_actual, y_test_inv, history, model_name):
fig, ax = plt.subplots(3, 1, figsize=(15, 9))
# Prediction vs actual price chart
ax[0].plot(y_pred_actual[:1000])
ax[0].plot(y_test_inv[:1000])
ax[0].legend(['prediction', 'actual'], loc='upper left')
ax[0].set_title(f'Prediction vs actual price for 1000 observation in test set ({model_name})')
ax[0].set_xlabel('Observation')
ax[0].set_ylabel('Price')
# MAPE chart
ax[1].plot(mape[:1000], label='MAPE') # Plot MAPE by hour
ax[1].set_ylim(bottom=0) # Start y-axis at zero
ax[1].set_title(f'MAPE by Hour ({model_name})')
ax[1].set_xlabel('Hour')
ax[1].set_ylabel('MAPE (%)')
# Training and validation MAE chart
ax[2].plot(history.history['loss'], label='Training Loss')
ax[2].plot(history.history['val_loss'], label='Validation Loss')
ax[2].legend()
ax[2].set_title(f'Training and validation MAE ({model_name})')
ax[2].set_xlabel('Epochs')
ax[2].set_ylabel('MAE')
fig.tight_layout()
plt.show()
print('')
print('')
print('---------------------------------------------------')
print(f'LSTM MAE for test set : {round(mean_absolute_error(y_pred,y_test),3)}')
print('---------------------------------------------------')
y_pred_actual = scaler_y.inverse_transform(y_pred)
print('')
plot_results(y_pred_actual, y_test_inv, history,'LSTM')