-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_price_forecast.py
136 lines (116 loc) · 5.08 KB
/
CNN_price_forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_addons as tfa
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Conv1D, Flatten, Dense, Dropout
from preprocess import rename_columns, swap_missing_data, interpolate_missing, add_holiday_variable, windowing
# Load and preprocess data
path = 'C:/Users/groutgauss/Machine_Learning_Projects/CAISO Price Forecast/Deep Learning/'
merged_df = pd.read_csv(path + 'data.csv')
# Rename column headers
column_mapping = {
'Datetime': 'datetime',
'Current demand': 'caiso_load_actuals',
'KCASANFR698_Temperature': 'SF_temp',
'KCASANFR698_Dew_Point': 'SF_dew',
'KCASANFR698_Humidity': 'SF_humidity',
'KCASANFR698_Speed': 'SF_windspeed',
'KCASANFR698_Gust': 'SF_windgust',
'KCASANFR698_Pressure': 'SF_pressure',
'KCASANJO17_Temperature': 'SJ_temp',
'KCASANJO17_Dew_Point': 'SJ_dew',
'KCASANJO17_Humidity': 'SJ_humidity',
'KCASANJO17_Speed': 'SJ_windspeed',
'KCASANJO17_Gust': 'SJ_windgust',
'KCASANJO17_Pressure': 'SJ_pressure',
'KCABAKER271_Temperature': 'BAKE_temp',
'KCABAKER271_Humidity': 'BAKE_humidity',
'KCABAKER271_Speed': 'BAKE_windspeed',
'KCABAKER271_Pressure': 'BAKE_pressure',
'KCAELSEG23_Temperature': 'EL_temp',
'KCAELSEG23_Dew_Point': 'EL_dew',
'KCAELSEG23_Humidity': 'EL_humidity',
'KCAELSEG23_Speed': 'EL_windspeed',
'KCAELSEG23_Gust': 'EL_windgust',
'KCAELSEG23_Pressure': 'EL_pressure',
'KCARIVER117_Temperature': 'RIV_temp',
'KCARIVER117_Dew_Point': 'RIV_dew',
'KCARIVER117_Humidity': 'RIV_humidity',
'KCARIVER117_Speed': 'RIV_windspeed',
'KCARIVER117_Gust': 'RIV_windgust',
'KCARIVER117_Pressure': 'RIV_pressure'
}
# Columns for swapping missing NaN data between SF and SJ
sf_columns = ['SF_temp', 'SF_dew', 'SF_humidity', 'SF_windspeed', 'SF_windgust', 'SF_pressure']
sj_columns = ['SJ_temp', 'SJ_dew', 'SJ_humidity', 'SJ_windspeed', 'SJ_windgust', 'SJ_pressure']
# Data preprocessing steps
data = rename_columns(merged_df, column_mapping)
data = swap_missing_data(data, sf_columns, sj_columns)
data = interpolate_missing(data)
data = add_holiday_variable(data, 'datetime', '2021-01-02', '2023-10-03')
# Split data into features and target
X = data.drop(['datetime', 'TH_SP15_GEN-APND'], axis=1).values
y = data['TH_SP15_GEN-APND'].values
# Apply PCA
pca = PCA(n_components=0.8)
scaler_pca = StandardScaler()
X_pca = pca.fit_transform(scaler_pca.fit_transform(X))
train_cutoff = int(0.8*X_pca.shape[0])
val_cutoff = int(0.9*X_pca.shape[0])
scaler_y = MinMaxScaler()
scaler_y.fit(y[:train_cutoff].reshape(-1,1))
y_norm = scaler_y.transform(y.reshape(-1,1))
# Windowing for sequence data
hist_size = 24
X_windowed, y_windowed = windowing(X_pca, y, hist_size)
# Train-validation-test split
X_train, X_val_test, y_train, y_val_test = train_test_split(X_windowed, y_windowed)
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, random_state=42)
# Define the CNN model
model = Sequential([
Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=X_train.shape[-2:]),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.1),
Dense(1)
])
# Compile the model
model.compile(optimizer='adam', loss='mean_absolute_error')
# Train the model
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=125, batch_size=64, verbose=1)
# Evaluate the model
y_pred = model.predict(X_test)
y_pred_actual = scaler_y.inverse_transform(y_pred.reshape(-1,1))
y_test_inv = scaler_y.inverse_transform(y_test)
def plot_results(y_pred_actual, y_test_inv, history, model_name):
fig, ax = plt.subplots(2, 1, figsize=(15, 9))
# Prediction vs actual price chart
ax[0].plot(y_pred_actual[:1000])
ax[0].plot(y_test_inv[:1000])
ax[0].legend(['prediction', 'actual'], loc='upper left')
ax[0].set_title(f'Prediction vs actual price for 1000 observation in test set ({model_name})')
ax[0].set_xlabel('Observation')
ax[0].set_ylabel('Price')
# MAE chart
ax[1].plot(history.history['loss'], label='Training Loss')
ax[1].plot(history.history['val_loss'], label='Validation Loss')
ax[1].legend()
ax[1].set_title(f'Training and validation MAE ({model_name})')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('MAE')
fig.tight_layout()
plt.show()
print('')
print('')
print('---------------------------------------------------')
print(f'LSTM MAE for test set : {round(mean_absolute_error(y_pred,y_test),3)}')
print('---------------------------------------------------')
y_pred_actual = scaler_y.inverse_transform(y_pred)
print('')
plot_results(y_pred_actual, y_test_inv, history,'CNN')