-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdynamic_main.py
354 lines (275 loc) · 15.6 KB
/
dynamic_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""Implementaion with Dynamic Loop in tensorflow
Test acc: 99.38% """
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
# 0. Training flags:
train_round = 1
ckpt = './checkpoints/capsnet_dynamic.ckpt' # Checkpoint file
resume = False # True if you have the above file
do_test_first = False # do test eval
save_after = 430 # and validate # checkpointing global step
batch_size = 128
epochs = 300
# 1. Optional: safe max
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.93
# 2. Optional: reproduce
np.random.seed(27)
tf.set_random_seed(27)
# 3. Data: temporary
mnist = input_data.read_data_sets('/tmp/data/', one_hot=True, reshape=False)
input_size = 28
# 4. Architecture parameters: hardcoded as in paper
pc_units = 32
pc_dims = 8
pc_capsules = pc_units * 6 * 6 # right now hard-coded
dc_units = 10
dc_dims = 16
epsilon = 1e-8
# to output activities of local feature detectors
conv_0_params = {'filters': 256, 'kernel_size': 9, 'strides': 1,
'padding': 'valid', 'activation': tf.nn.relu
}
# to output primary capsules
conv_pc_params = {'filters': pc_units * pc_dims, 'kernel_size': 9, 'strides': 2,
'padding': 'valid', 'activation': tf.nn.relu # <-------- doubt/ works well with relu/ in paper not mentioned
}
# arch params
arch_params = {'inp_dims': input_size,
'pc_dims': pc_dims,
'out_dims': dc_dims,
'classes': dc_units,
'm_plus': 0.9,
'm_minus': 0.1,
'lambda_val': 0.5, # down weight of the loss for absent digit classes # <------------
'epsilon': epsilon,
'recon_loss_w': 0.0005, # reconstruction loss weight # <------------
'num_iters': 3,
'lr':1e-3,
}
# 5. Activation function: squash
def squash(in_tensor, axis=-1, name='squash'):
"""Squashing Function: Squash magnitude along an axis but preserve orientation"""
with tf.name_scope(name):
norm_square = tf.reduce_sum(tf.square(in_tensor), axis=axis, keep_dims=True, name='norm_square') # [N, 1, J, 1, 1] if axis = -2
squash_factor = norm_square / (1 + norm_square) # scalar factor to squash magnitudes b/w 0-1
orientation = in_tensor / tf.sqrt(norm_square + epsilon) # unchanged
out_tensor = squash_factor * orientation
return out_tensor
# 6. Agreement
def prediction_agreement(next_layer_out_predictions, next_layer_outs, name='agree_by_dot'):
"""Agreement: Explain away this layer values,
by agreeing predictions of this layer for next layer outputs with next layers real outputs."""
with tf.name_scope(name):
# Tile next_layer_outs for each i from I=1152, as we have to see that from 1152 capsules which agree max.
next_layer_outs = tf.tile(next_layer_outs, multiples=[1, 1152, 1, 1, 1]) # [N, 1152, 10, 16, 1]
# [N, 1152, 10, 1, 16] x [N, 1152, 10, 16, 1] = [N, 1152, 10, 1, 1]
agreement = tf.matmul(next_layer_out_predictions, next_layer_outs, transpose_a=True)
return agreement
# 7. Route
def routing(capsule_outs, num_iters=3):
"""Routing: Learn routing weights and route, dynamic connection between two capsule layers."""
batch_size = tf.shape(capsule_outs)[0] # will know only during run
with tf.name_scope('predict_next_layer_outs'):
# Tensor containg all transformation matrices W_ij
W_IJ = tf.Variable(tf.random_normal([1, pc_capsules, dc_units, pc_dims, dc_dims], stddev=0.01)) # [1, 1152, 10, 8, 16]
W_IJ = tf.tile(W_IJ, multiples=[batch_size, 1, 1, 1, 1]) # [N, 1152, 10, 8, 16] <-- IJ[8, 16]
# Predict Next Layer's Output
next_layer_out_predictions = tf.matmul(W_IJ, capsule_outs, transpose_a=True)
with tf.name_scope('routing'):
# [N, 1152, 10, 1, 1] Constant Value Tensor
prior_IJ = tf.zeros([batch_size, pc_capsules, dc_units, 1, 1],
dtype=np.float32, name='routing_prior')
def execute(prior_IJ, next_layer_out_predictions, next_layer_outs, counter):
c_IJ = tf.nn.softmax(prior_IJ, dim=2) # [N, 1152, 10, 1, 1]
next_layer_outs = tf.reduce_sum((c_IJ * next_layer_out_predictions), axis=1, keep_dims=True) # [N, 1, 10, 16, 1]
next_layer_outs = squash(next_layer_outs, axis=-2)
routing_weights = tf.add(prior_IJ, prediction_agreement(next_layer_out_predictions, next_layer_outs))
return routing_weights, next_layer_out_predictions, next_layer_outs, tf.add(counter, 1)
def check(prior_IJ, next_layer_out_predictions, next_layer_outs, counter):
return tf.less(counter, num_iters)
counter = tf.constant(1)
# dummy Constant Value Tensor to hold digit caps outputs
next_layer_outs = tf.zeros([batch_size, 1, dc_units, dc_dims, 1], dtype=np.float32, name='dc_out') # [N, 1, 10, 16, 1]
_, _, next_layer_outs, counter = tf.while_loop(check, execute, [prior_IJ, next_layer_out_predictions, next_layer_outs, counter])
return next_layer_outs # [N, 1, 10, 16, 1]
class CapsNet:
def __init__(self, conv_0_params, conv_pc_params, inp_dims=28, pc_dims=8, out_dims=16, classes=10, num_iters=3,
recon_loss_w=0.0005, epsilon=1e-9, m_plus=0.9, m_minus=0.1, lambda_val=0.5, lr=1e-3, scope='CapsNet'):
print('Learning Rate={}, m_plus={}, m_minus={}, lambda_val={}'.format(lr,
m_plus,
m_minus,
lambda_val))
with tf.variable_scope(scope):
self.X = tf.placeholder(tf.float32,
shape=[None, inp_dims, inp_dims, 1],
name='inputs')
self.Y = tf.placeholder(tf.float32,
shape=[None, classes],
name='one_hot_labels')
self.is_training = tf.placeholder_with_default(True, shape=[], name='bool_for_masking')
# Get feature maps for basic features
with tf.variable_scope('conv_0_layer'):
self.conv_0 = tf.layers.conv2d(self.X, **conv_0_params) # [N, 20, 20, 256]
# Get Primary Capsules
with tf.variable_scope('conv_pc_layer'):
# raw caps
self.conv_pc = tf.layers.conv2d(self.conv_0, **conv_pc_params) # [N, 6, 6, 256]
batch_size = tf.shape(self.conv_pc)[0]
self.conv_pc = tf.reshape(self.conv_pc, shape=[batch_size, -1, pc_dims]) # [N, 1152, 8]
# activated caps
self.pcaps = squash(self.conv_pc) # squash 1152 capsules along axis=-1
self.pcaps = tf.reshape(self.pcaps, shape=[batch_size, -1, 1, pc_dims, 1])
with tf.variable_scope('digit_caps'):
# tile pcaps activations w.r.t each unit in digit caps
self.tiled_pcaps = tf.tile(self.pcaps, multiples=[1, 1, classes, 1, 1])
self.digit_caps_out = tf.squeeze(routing(self.tiled_pcaps, num_iters), axis=[1, -1], name='distributed_prediction') # [N, 10, 16]
# [N, 10, 16] --> [N, 10] length of vectors for actual predictions
self.pred_lengths = tf.sqrt(tf.reduce_sum(tf.square(self.digit_caps_out) + epsilon, axis=2, keep_dims=False))
# [N, 10] --> # [N,]
self.predictions = tf.squeeze(tf.argmax(self.pred_lengths,
axis=1, output_type=tf.int32, name='predictions'))
self.one_hot_predictions = tf.one_hot(self.predictions, depth=classes, name='one_hot_predictions')
# [N, 10] * [N, 10] = [N, 10]
self.m_plus = self.Y * tf.square(tf.maximum(0., m_plus - self.pred_lengths)) # [N, 10]
self.m_minus = lambda_val * (1 - self.Y) * tf.square(tf.maximum(0., self.pred_lengths - m_minus)) # [N, 10]
self.margin_loss = tf.reduce_mean(tf.reduce_sum(self.m_plus + self.m_minus, axis=-1), name='margin_loss')
self.recon_target = tf.cond(self.is_training,
lambda: self.Y, # Train True use Labels
lambda: self.one_hot_predictions,
name='recon_target')
with tf.variable_scope('masking'):
# WAY 1:
self.masked_pred = tf.matmul(self.digit_caps_out, tf.reshape(self.recon_target, shape=[-1, 10, 1]),
transpose_a=True, name='masked_pred') # [N, 16, 10] x [N, 10, 1] = [N, 16, 1]
# # WAY 2:
# self.masked_pred = tf.multiply(self.digit_caps_out,
# tf.reshape(self.recon_target, shape=[-1, 10, 1]),
# name='masked_pred') # [N, 10, 16] x [N, 10, 1] = [N, 10, 16]
with tf.variable_scope('decoder'):
# [N, 16, 1] --> [N, 16]
self.decoder_inp = tf.reshape(self.masked_pred,
shape=[-1, out_dims]) # WAY 2: shape = [-1, out_dims * classes]
self.fc1 = tf.layers.dense(self.decoder_inp,
units=512,
activation=tf.nn.relu,
name='fc1')
self.fc2 = tf.layers.dense(self.fc1,
units=1024,
activation=tf.nn.relu,
name='fc2')
self.pred_X = tf.layers.dense(self.fc2,
units=inp_dims * inp_dims,
activation=tf.nn.sigmoid,
name='pred_X') # [N, 28*28]
self.pred_image = tf.reshape(
self.pred_X, shape=[-1, inp_dims, inp_dims, 1])
# Backward
self.reconstruction_loss = tf.reduce_sum(tf.square(tf.reshape(self.X,
shape=[-1, inp_dims * inp_dims]) - self.pred_X),
name='reconstruction_loss')
self.loss = tf.add(self.margin_loss, recon_loss_w * self.reconstruction_loss,
name='loss')
self.optimizer = tf.train.AdamOptimizer(learning_rate=lr)
self.global_step = tf.Variable(0, name='global_step',
trainable=False)
self.train_op = self.optimizer.minimize(self.loss,
global_step=self.global_step)
# function variables/ops:
# [N, 10] --> # [N,]
self.true = tf.squeeze(tf.argmax(self.Y, axis=1,
output_type=tf.int32, name='true_values'))
self.correct = tf.cast(tf.equal(self.true,
self.predictions), dtype=tf.float32)
self.acc = tf.reduce_mean(self.correct) * 100
# meta variables:
self.tvars = tf.trainable_variables()
def predict(self, xs, ys=None, is_training=True, get_recon_images=False, sess=None):
"""Returns Predicted Number and Reconstructed Image."""
sess = sess or tf.get_default_session()
if is_training and ys is None and get_recon_images:
print("Would need true one hot encoded labels..for masking..")
return
if ys is None:
ys = np.zeros([10, 10], dtype=np.float32) # dummy
if get_recon_images:
return sess.run([self.predictions, self.pred_image], feed_dict={self.X: xs,
self.Y: ys,
self.is_training: is_training})
else:
return sess.run(self.predictions, feed_dict={self.X: xs})
def accuracy(self, xs, ys, sess=None):
"""Predicts and returns accuracy at current state."""
sess = sess or tf.get_default_session()
return sess.run(self.acc, feed_dict={self.X: xs, self.Y: ys})
def learn(self, xs, ys, is_training=True, val_xs=None, val_ys=None, sess=None):
"""Train Step"""
sess = sess or tf.get_default_session()
if val_xs is not None and val_ys is not None:
val_acc = self.accuracy(val_xs, val_ys, sess=sess)
return val_acc
else:
train_acc, loss, _ = sess.run([self.acc, self.loss, self.train_op], feed_dict={
self.X: xs, self.Y: ys, self.is_training: is_training})
return train_acc, loss
# Training:
"""
55,000 data points of training data (mnist.train),
10,000 points of test data (mnist.test)
and 5,000 points of validation data (mnist.validation).
"""
test_batch_size = 100
tf.reset_default_graph()
caps_net = CapsNet(conv_0_params, conv_pc_params, **arch_params)
print('Network Built..')
saver = tf.train.Saver(var_list=caps_net.tvars)
file = open('avg_log_{}.csv'.format(train_round), 'w')
file.write('step,avg_train_acc,step_val_acc\n')
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
if resume:
saver.restore(sess, ckpt)
print('RESUMED..')
if do_test_first:
ta = 0
total_steps = len(mnist.test.images) // test_batch_size
for step in range(1, total_steps + 1):
val_x, val_y = mnist.test.next_batch(test_batch_size)
test_batch_accuracy = caps_net.accuracy(val_x, val_y, sess)
ta += test_batch_accuracy
print('{},{:>3.3f}'.format(step, test_batch_accuracy))
print('Test Accuracy: ', ta / total_steps)
print('*' * 90)
print('Training..learning_rate = {}, total_epochs = {}'.format(arch_params['lr'], epochs))
total_steps_approx = save_after * epochs
val_acc_base = -np.inf
ta = 0
for step in range(1, total_steps_approx + 1):
batch_x, batch_y = mnist.train.next_batch(batch_size, shuffle=True)
global_step = sess.run(caps_net.global_step)
if step % save_after == 0:
print('Validation in progress..')
va = 0
total_steps = len(mnist.validation.images) // test_batch_size
for v in range(total_steps):
val_x, val_y = mnist.validation.next_batch(test_batch_size, shuffle=True)
val_accuracy = caps_net.accuracy(val_x, val_y, sess)
va += val_accuracy
print('Validation log in..avg_log_{}.csv'.format(train_round))
va = va / total_steps
file.write('{},{:>3.3f},{:>3.3f}\n'.format(step, ta / save_after,
va))
file.flush()
ta = 0
if va > val_acc_base:
saver.save(sess, ckpt)
print('SAVED..old best val acc = {}, new best val acc = {}'.format(val_acc_base, va))
val_acc_base = va
else:
train_accuracy, train_loss = caps_net.learn(batch_x, batch_y,
sess=sess)
print('{},{:>3.3f},{:>3.3f}'.format(step, train_accuracy,
train_loss))
ta += train_accuracy
file.close()