|
| 1 | +import random |
| 2 | +from concurrent.futures import ThreadPoolExecutor |
| 3 | +from typing import List, Literal, Optional, Tuple, Type, Union |
| 4 | + |
| 5 | +import supervision as sv |
| 6 | +from fastapi import BackgroundTasks |
| 7 | +from pydantic import ConfigDict, Field |
| 8 | +from typing_extensions import Annotated |
| 9 | + |
| 10 | +from inference.core.cache.base import BaseCache |
| 11 | +from inference.core.workflows.core_steps.sinks.roboflow.dataset_upload.v1 import ( |
| 12 | + register_datapoint_at_roboflow, |
| 13 | +) |
| 14 | +from inference.core.workflows.execution_engine.entities.base import ( |
| 15 | + Batch, |
| 16 | + OutputDefinition, |
| 17 | + WorkflowImageData, |
| 18 | +) |
| 19 | +from inference.core.workflows.execution_engine.entities.types import ( |
| 20 | + BATCH_OF_BOOLEAN_KIND, |
| 21 | + BATCH_OF_CLASSIFICATION_PREDICTION_KIND, |
| 22 | + BATCH_OF_INSTANCE_SEGMENTATION_PREDICTION_KIND, |
| 23 | + BATCH_OF_KEYPOINT_DETECTION_PREDICTION_KIND, |
| 24 | + BATCH_OF_OBJECT_DETECTION_PREDICTION_KIND, |
| 25 | + BATCH_OF_STRING_KIND, |
| 26 | + BOOLEAN_KIND, |
| 27 | + FLOAT_KIND, |
| 28 | + ROBOFLOW_PROJECT_KIND, |
| 29 | + STRING_KIND, |
| 30 | + ImageInputField, |
| 31 | + StepOutputImageSelector, |
| 32 | + StepOutputSelector, |
| 33 | + WorkflowImageSelector, |
| 34 | + WorkflowParameterSelector, |
| 35 | +) |
| 36 | +from inference.core.workflows.prototypes.block import ( |
| 37 | + BlockResult, |
| 38 | + WorkflowBlock, |
| 39 | + WorkflowBlockManifest, |
| 40 | +) |
| 41 | + |
| 42 | +FloatZeroToHundred = Annotated[float, Field(ge=0.0, le=100.0)] |
| 43 | + |
| 44 | +SHORT_DESCRIPTION = "Save images and predictions in your Roboflow Dataset" |
| 45 | + |
| 46 | +LONG_DESCRIPTION = """ |
| 47 | +Block let users save their images and predictions into Roboflow Dataset. Persisting data from |
| 48 | +production environments helps iteratively building more robust models. |
| 49 | +
|
| 50 | +Block provides configuration options to decide how data should be stored and what are the limits |
| 51 | +to be applied. We advice using this block in combination with rate limiter blocks to effectively |
| 52 | +collect data that the model struggle with. |
| 53 | +""" |
| 54 | + |
| 55 | +WORKSPACE_NAME_CACHE_EXPIRE = 900 # 15 min |
| 56 | +TIMESTAMP_FORMAT = "%Y_%m_%d" |
| 57 | +DUPLICATED_STATUS = "Duplicated image" |
| 58 | +BatchCreationFrequency = Literal["never", "daily", "weekly", "monthly"] |
| 59 | + |
| 60 | + |
| 61 | +class BlockManifest(WorkflowBlockManifest): |
| 62 | + model_config = ConfigDict( |
| 63 | + json_schema_extra={ |
| 64 | + "name": "Roboflow Dataset Upload", |
| 65 | + "version": "v2", |
| 66 | + "short_description": SHORT_DESCRIPTION, |
| 67 | + "long_description": LONG_DESCRIPTION, |
| 68 | + "license": "Apache-2.0", |
| 69 | + "block_type": "sink", |
| 70 | + } |
| 71 | + ) |
| 72 | + type: Literal["roboflow_core/roboflow_dataset_upload@v2"] |
| 73 | + images: Union[WorkflowImageSelector, StepOutputImageSelector] = ImageInputField |
| 74 | + predictions: Optional[ |
| 75 | + StepOutputSelector( |
| 76 | + kind=[ |
| 77 | + BATCH_OF_OBJECT_DETECTION_PREDICTION_KIND, |
| 78 | + BATCH_OF_INSTANCE_SEGMENTATION_PREDICTION_KIND, |
| 79 | + BATCH_OF_KEYPOINT_DETECTION_PREDICTION_KIND, |
| 80 | + BATCH_OF_CLASSIFICATION_PREDICTION_KIND, |
| 81 | + ] |
| 82 | + ) |
| 83 | + ] = Field( |
| 84 | + default=None, |
| 85 | + description="Reference q detection-like predictions", |
| 86 | + examples=["$steps.object_detection_model.predictions"], |
| 87 | + ) |
| 88 | + target_project: Union[ |
| 89 | + WorkflowParameterSelector(kind=[ROBOFLOW_PROJECT_KIND]), str |
| 90 | + ] = Field( |
| 91 | + description="name of Roboflow dataset / project to be used as target for collected data", |
| 92 | + examples=["my_dataset", "$inputs.target_al_dataset"], |
| 93 | + ) |
| 94 | + usage_quota_name: str = Field( |
| 95 | + description="Unique name for Roboflow project pointed by `target_project` parameter, that identifies " |
| 96 | + "usage quota applied for this block.", |
| 97 | + examples=["quota-for-data-sampling-1"], |
| 98 | + ) |
| 99 | + data_percentage: Union[ |
| 100 | + FloatZeroToHundred, WorkflowParameterSelector(kind=[FLOAT_KIND]) |
| 101 | + ] = Field( |
| 102 | + description="Percent of data that will be saved (in range [0.0, 100.0])", |
| 103 | + examples=[True, False, "$inputs.persist_predictions"], |
| 104 | + ) |
| 105 | + persist_predictions: Union[bool, WorkflowParameterSelector(kind=[BOOLEAN_KIND])] = ( |
| 106 | + Field( |
| 107 | + default=True, |
| 108 | + description="Boolean flag to decide if predictions should be registered along with images", |
| 109 | + examples=[True, False, "$inputs.persist_predictions"], |
| 110 | + ) |
| 111 | + ) |
| 112 | + minutely_usage_limit: int = Field( |
| 113 | + default=10, |
| 114 | + description="Maximum number of data registration requests per minute accounted in scope of " |
| 115 | + "single server or whole Roboflow platform, depending on context of usage.", |
| 116 | + examples=[10, 60], |
| 117 | + ) |
| 118 | + hourly_usage_limit: int = Field( |
| 119 | + default=100, |
| 120 | + description="Maximum number of data registration requests per hour accounted in scope of " |
| 121 | + "single server or whole Roboflow platform, depending on context of usage.", |
| 122 | + examples=[10, 60], |
| 123 | + ) |
| 124 | + daily_usage_limit: int = Field( |
| 125 | + default=1000, |
| 126 | + description="Maximum number of data registration requests per day accounted in scope of " |
| 127 | + "single server or whole Roboflow platform, depending on context of usage.", |
| 128 | + examples=[10, 60], |
| 129 | + ) |
| 130 | + max_image_size: Tuple[int, int] = Field( |
| 131 | + default=(1920, 1080), |
| 132 | + description="Maximum size of the image to be registered - bigger images will be " |
| 133 | + "downsized preserving aspect ratio. Format of data: `(width, height)`", |
| 134 | + examples=[(1920, 1080), (512, 512)], |
| 135 | + ) |
| 136 | + compression_level: int = Field( |
| 137 | + default=95, |
| 138 | + gt=0, |
| 139 | + le=100, |
| 140 | + description="Compression level for images registered", |
| 141 | + examples=[95, 75], |
| 142 | + ) |
| 143 | + registration_tags: List[ |
| 144 | + Union[WorkflowParameterSelector(kind=[STRING_KIND]), str] |
| 145 | + ] = Field( |
| 146 | + default_factory=list, |
| 147 | + description="Tags to be attached to registered datapoints", |
| 148 | + examples=[["location-florida", "factory-name", "$inputs.dynamic_tag"]], |
| 149 | + ) |
| 150 | + disable_sink: Union[bool, WorkflowParameterSelector(kind=[BOOLEAN_KIND])] = Field( |
| 151 | + default=False, |
| 152 | + description="boolean flag that can be also reference to input - to arbitrarily disable " |
| 153 | + "data collection for specific request", |
| 154 | + examples=[True, "$inputs.disable_active_learning"], |
| 155 | + ) |
| 156 | + fire_and_forget: Union[bool, WorkflowParameterSelector(kind=[BOOLEAN_KIND])] = ( |
| 157 | + Field( |
| 158 | + default=True, |
| 159 | + description="Boolean flag dictating if sink is supposed to be executed in the background, " |
| 160 | + "not waiting on status of registration before end of workflow run. Use `True` if best-effort " |
| 161 | + "registration is needed, use `False` while debugging and if error handling is needed", |
| 162 | + ) |
| 163 | + ) |
| 164 | + labeling_batch_prefix: Union[str, WorkflowParameterSelector(kind=[STRING_KIND])] = ( |
| 165 | + Field( |
| 166 | + default="workflows_data_collector", |
| 167 | + description="Prefix of the name for labeling batches that will be registered in Roboflow app", |
| 168 | + examples=["my_labeling_batch_name"], |
| 169 | + ) |
| 170 | + ) |
| 171 | + labeling_batches_recreation_frequency: BatchCreationFrequency = Field( |
| 172 | + default="never", |
| 173 | + description="Frequency in which new labeling batches are created in Roboflow app. New batches " |
| 174 | + "are created with name prefix provided in `labeling_batch_prefix` in given time intervals." |
| 175 | + "Useful in organising labeling flow.", |
| 176 | + examples=["never", "daily"], |
| 177 | + ) |
| 178 | + |
| 179 | + @classmethod |
| 180 | + def accepts_batch_input(cls) -> bool: |
| 181 | + return True |
| 182 | + |
| 183 | + @classmethod |
| 184 | + def describe_outputs(cls) -> List[OutputDefinition]: |
| 185 | + return [ |
| 186 | + OutputDefinition(name="error_status", kind=[BATCH_OF_BOOLEAN_KIND]), |
| 187 | + OutputDefinition(name="message", kind=[BATCH_OF_STRING_KIND]), |
| 188 | + ] |
| 189 | + |
| 190 | + @classmethod |
| 191 | + def get_execution_engine_compatibility(cls) -> Optional[str]: |
| 192 | + return ">=1.0.0,<2.0.0" |
| 193 | + |
| 194 | + |
| 195 | +class RoboflowDatasetUploadBlockV2(WorkflowBlock): |
| 196 | + |
| 197 | + def __init__( |
| 198 | + self, |
| 199 | + cache: BaseCache, |
| 200 | + api_key: Optional[str], |
| 201 | + background_tasks: Optional[BackgroundTasks], |
| 202 | + thread_pool_executor: Optional[ThreadPoolExecutor], |
| 203 | + ): |
| 204 | + self._cache = cache |
| 205 | + self._api_key = api_key |
| 206 | + self._background_tasks = background_tasks |
| 207 | + self._thread_pool_executor = thread_pool_executor |
| 208 | + |
| 209 | + @classmethod |
| 210 | + def get_init_parameters(cls) -> List[str]: |
| 211 | + return ["cache", "api_key", "background_tasks", "thread_pool_executor"] |
| 212 | + |
| 213 | + @classmethod |
| 214 | + def get_manifest(cls) -> Type[WorkflowBlockManifest]: |
| 215 | + return BlockManifest |
| 216 | + |
| 217 | + def run( |
| 218 | + self, |
| 219 | + images: Batch[WorkflowImageData], |
| 220 | + predictions: Optional[Batch[Union[sv.Detections, dict]]], |
| 221 | + target_project: str, |
| 222 | + usage_quota_name: str, |
| 223 | + data_percentage: float, |
| 224 | + minutely_usage_limit: int, |
| 225 | + persist_predictions: bool, |
| 226 | + hourly_usage_limit: int, |
| 227 | + daily_usage_limit: int, |
| 228 | + max_image_size: Tuple[int, int], |
| 229 | + compression_level: int, |
| 230 | + registration_tags: List[str], |
| 231 | + disable_sink: bool, |
| 232 | + fire_and_forget: bool, |
| 233 | + labeling_batch_prefix: str, |
| 234 | + labeling_batches_recreation_frequency: BatchCreationFrequency, |
| 235 | + ) -> BlockResult: |
| 236 | + if self._api_key is None: |
| 237 | + raise ValueError( |
| 238 | + "RoboflowDataCollector block cannot run without Roboflow API key. " |
| 239 | + "If you do not know how to get API key - visit " |
| 240 | + "https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key to learn how to " |
| 241 | + "retrieve one." |
| 242 | + ) |
| 243 | + if disable_sink: |
| 244 | + return [ |
| 245 | + { |
| 246 | + "error_status": False, |
| 247 | + "message": "Sink was disabled by parameter `disable_sink`", |
| 248 | + } |
| 249 | + for _ in range(len(images)) |
| 250 | + ] |
| 251 | + result = [] |
| 252 | + predictions = [None] * len(images) if predictions is None else predictions |
| 253 | + for image, prediction in zip(images, predictions): |
| 254 | + error_status, message = maybe_register_datapoint_at_roboflow( |
| 255 | + image=image, |
| 256 | + prediction=prediction, |
| 257 | + target_project=target_project, |
| 258 | + usage_quota_name=usage_quota_name, |
| 259 | + data_percentage=data_percentage, |
| 260 | + persist_predictions=persist_predictions, |
| 261 | + minutely_usage_limit=minutely_usage_limit, |
| 262 | + hourly_usage_limit=hourly_usage_limit, |
| 263 | + daily_usage_limit=daily_usage_limit, |
| 264 | + max_image_size=max_image_size, |
| 265 | + compression_level=compression_level, |
| 266 | + registration_tags=registration_tags, |
| 267 | + fire_and_forget=fire_and_forget, |
| 268 | + labeling_batch_prefix=labeling_batch_prefix, |
| 269 | + new_labeling_batch_frequency=labeling_batches_recreation_frequency, |
| 270 | + cache=self._cache, |
| 271 | + background_tasks=self._background_tasks, |
| 272 | + thread_pool_executor=self._thread_pool_executor, |
| 273 | + api_key=self._api_key, |
| 274 | + ) |
| 275 | + result.append({"error_status": error_status, "message": message}) |
| 276 | + return result |
| 277 | + |
| 278 | + |
| 279 | +def maybe_register_datapoint_at_roboflow( |
| 280 | + image: WorkflowImageData, |
| 281 | + prediction: Optional[Union[sv.Detections, dict]], |
| 282 | + target_project: str, |
| 283 | + usage_quota_name: str, |
| 284 | + data_percentage: float, |
| 285 | + persist_predictions: bool, |
| 286 | + minutely_usage_limit: int, |
| 287 | + hourly_usage_limit: int, |
| 288 | + daily_usage_limit: int, |
| 289 | + max_image_size: Tuple[int, int], |
| 290 | + compression_level: int, |
| 291 | + registration_tags: List[str], |
| 292 | + fire_and_forget: bool, |
| 293 | + labeling_batch_prefix: str, |
| 294 | + new_labeling_batch_frequency: BatchCreationFrequency, |
| 295 | + cache: BaseCache, |
| 296 | + background_tasks: Optional[BackgroundTasks], |
| 297 | + thread_pool_executor: Optional[ThreadPoolExecutor], |
| 298 | + api_key: str, |
| 299 | +) -> Tuple[bool, str]: |
| 300 | + normalised_probability = data_percentage / 100 |
| 301 | + if random.random() < normalised_probability: |
| 302 | + return register_datapoint_at_roboflow( |
| 303 | + image=image, |
| 304 | + prediction=prediction, |
| 305 | + target_project=target_project, |
| 306 | + usage_quota_name=usage_quota_name, |
| 307 | + persist_predictions=persist_predictions, |
| 308 | + minutely_usage_limit=minutely_usage_limit, |
| 309 | + hourly_usage_limit=hourly_usage_limit, |
| 310 | + daily_usage_limit=daily_usage_limit, |
| 311 | + max_image_size=max_image_size, |
| 312 | + compression_level=compression_level, |
| 313 | + registration_tags=registration_tags, |
| 314 | + fire_and_forget=fire_and_forget, |
| 315 | + labeling_batch_prefix=labeling_batch_prefix, |
| 316 | + new_labeling_batch_frequency=new_labeling_batch_frequency, |
| 317 | + cache=cache, |
| 318 | + background_tasks=background_tasks, |
| 319 | + thread_pool_executor=thread_pool_executor, |
| 320 | + api_key=api_key, |
| 321 | + ) |
| 322 | + return False, "Registration skipped due to sampling settings" |
0 commit comments