-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhot_plate_cuda.cu
139 lines (119 loc) · 2.65 KB
/
hot_plate_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<sys/time.h>
#define MAXROW 1024
#define MAXCOL 1024
double when()
{
struct timeval tp;
gettimeofday(&tp, NULL);
return ((double) tp.tv_sec + (double) tp.tv_usec * 1e-6);
}
void initialize(float *oA, float *nA)
{
int i,j;
for(i=0; i<MAXROW; i++)
{
for(j=0;j<MAXCOL;j++)
{
if(i==0 || j==0 || j==(MAXCOL-1))
{
nA[i*MAXCOL + j] = 0.0;
oA[i*MAXCOL + j] = 0.0;
}
else if (i==MAXROW-1)
{
nA[i*MAXCOL + j] = 100.0;
oA[i*MAXCOL + j] = 100.0;
}
else if (i==400 && j<=330)
{
nA[i*MAXCOL + j] = 100.0;
oA[i*MAXCOL + j] = 100.0;
}
else if (i==200 && j ==500)
{
nA[i*MAXCOL + j] = 100.0;
oA[i*MAXCOL + j] = 100.0;
}
else
{
nA[i*MAXCOL + j] = 50.0;
oA[i*MAXCOL + j] = 50.0;
}
}
}
}
__global__ void calculate_new_values(float *nA, float *oA)
{
if(blockIdx.x == 0 || threadIdx.x ==0 ||blockIdx.x == MAXCOL-1 || threadIdx.x == MAXCOL-1
|| (blockIdx.x==400 && threadIdx.x<=330) || (blockIdx.x==200 && threadIdx.x==500) )
{}
else
{
nA[blockIdx.x * MAXCOL + threadIdx.x]
=(oA[(blockIdx.x+1) * MAXCOL + threadIdx.x] +
oA[(blockIdx.x-1) * MAXCOL + threadIdx.x] +
oA[blockIdx.x * MAXCOL + threadIdx.x+1] +
oA[blockIdx.x * MAXCOL + threadIdx.x-1] +
(4 * oA[blockIdx.x * MAXCOL + threadIdx.x]))/8.0;
}
}
int main(void)
{
double start_time = when();
float *nA, *oA;
float *d_nA, *d_oA;
float *tmp;
int iter=0;
float convergence;
int converged = 0;
int size = MAXROW * MAXCOL * sizeof(float);
nA = (float*)malloc(size);
oA = (float*)malloc(size);
cudaError_t err = cudaMalloc((void**)&d_nA,size);
cudaError_t err1 = cudaMalloc((void**)&d_oA,size);
initialize(oA, nA);
cudaMemcpy(d_oA, oA, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_nA, nA, size, cudaMemcpyHostToDevice);
while(!converged)
{
calculate_new_values<<<1024,1024>>>(d_nA , d_oA);
cudaMemcpy(nA , d_nA, size, cudaMemcpyDeviceToHost);
converged = 1;
for(int i=1;i<MAXROW-1;i++)
{
for(int j=1;j<MAXCOL-1;j++)
{
if( (i==400 && j<=330) || (i==200 && j ==500))
{
//skip
}
else
{
convergence = nA[i*MAXCOL + j]- ((nA[(i+1)*MAXCOL + j] + nA[(i-1)*MAXCOL + j]
+ nA[i*MAXCOL + j+1] + nA[i*MAXCOL + j-1])/4.0 );
if(fabs(convergence) > 0.1)
{
converged = 0;
break;
}
}
}
if(converged == 0)
break;
}
iter++;
tmp = d_nA;
d_nA = d_oA;
d_oA = tmp;
}
printf("iter = %d and execution time = %f\n",iter, when() - start_time);
cudaMemcpy(nA, d_nA, size, cudaMemcpyDeviceToHost);
cudaFree(d_nA);
cudaFree(d_oA);
free(nA);
free(oA);
return 1;
}