-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
264 lines (248 loc) · 10.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Google Tag Manager -->
<script>(function (w, d, s, l, i) {
w[l] = w[l] || []; w[l].push({
'gtm.start':
new Date().getTime(), event: 'gtm.js'
}); var f = d.getElementsByTagName(s)[0],
j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src =
'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f);
})(window, document, 'script', 'dataLayer', 'GTM-KZ7N9473');</script>
<!-- End Google Tag Manager -->
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="icon" href="favicon.ico" type="image/x-icon">
<title>Ricardo Garcia - Python and C# Developer & ML Enthusiast</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
<link rel="stylesheet" href="style.css">
</head>
<body>
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-KZ7N9473" height="0" width="0"
style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<!-- Header -->
<header>
<div class="container">
<h1>Ricardo Garcia</h1>
<p>Python and C# Developer & Machine Learning Enthusiast</p>
<p>Leveraging 15+ years of software engineering experience to develop efficient and scalable solutions in Python,
C# and machine learning.</p>
</div>
</header>
<!-- Projects Section -->
<section id="portfolio" class="container">
<h2>Projects</h2>
<div class="project">
<h3>
<a href="https://github.com/rigaml/portfolio" target="_blank" aria-label="Open project link in new tab">
<span>RESTful API for Stock Portfolio Management and Tax Calculation</span> <i
class="fas fa-external-link-alt"></i></a>
</h3>
<ul class="project-tech">
<li>Python</li>
<li>Django Rest Framework</li>
<li>PostgreSQL</li>
<li>Pytest</li>
<li>Poetry</li>
<li>AWS</li>
<li>Terraform</li>
<li>Docker</li>
</ul>
<div>
<ul class="project-description">
<li>Built a Django-powered REST API to simplify stock portfolio tracking and tax compliance.</li>
<li>Automated FIFO-based profit calculations and currency conversions to GBP for UK tax rules.</li>
<li>Leveraged PostgreSQL for secure data storage.</li>
<li>Established comprehensive unit tests using pytest to ensure
reliability.</li>
<li>Implemented CI/CD pipelines to AWS with GitHub Actions, Docker and Terraform to streamline delivery.</li>
</ul>
</div>
</div>
<div class="project">
<h3>
<a href="https://github.com/rigaml/predict-backtest" target="_blank" aria-label="Open project link in new tab">
<span>Stock Market Prediction using PyTorch and Backtesting</span>
<i class="fas fa-external-link-alt"></i>
</a>
</h3>
<ul class="project-tech">
<li>Python</li>
<li>PyTorch</li>
<li>Pandas</li>
<li>Matplotlib</li>
<li>Jupyter Notebook</li>
<li>Pytest</li>
<li>Poetry</li>
</ul>
<div>
<ul class="project-description">
<li>
Developed a PyTorch neural network to predict stock price movements using historical data.</li>
<li>
Implemented data preprocessing techniques to clean and prepare stock data for training.</li>
<li>
Integrated a backtesting library to simulate the model's performance on historical data.</li>
<li>
Evaluated various trading strategies using backtesting library.</li>
<li>
Documented results in Jupyter Notebooks and stored resulting model in models folder.</li>
</ul>
</div>
</div>
<div class="project">
<h3>
<a href="https://github.com/rigaml/practice-flask" target="_blank" aria-label="Open project link in new tab">
<span>User Activity Monitoring API with Flask</span>
<i class="fas fa-external-link-alt"></i>
</a>
</h3>
<ul class="project-tech">
<li>Python</li>
<li>Flask</li>
<li>SQLAlchemy</li>
<li>PostgreSQL</li>
<li>Alembic</li>
<li>Pytest</li>
<li>Poetry</li>
</ul>
<div>
<ul class="project-description">
<li>
Implemented a Flask API endpoint <i>/event</i> to process user actions (deposits/withdrawals).</li>
<li>
Designed and integrated a rule-based alert system, triggering alerts for specific behaviors (e.g., large
withdrawals, consecutive actions), enhancing security and fraud detection capabilities.</li>
<li>
Developed user-specific alert thresholds based on user risk profiles (low, medium, high).</li>
<li>
Implemented data persistence using SQLAlchemy with SQLite/PostgreSQL, ensuring reliable storage and
retrieval of user action data.</li>
<li>
Utilized Alembic for database migrations, tracking and managing schema changes, ensuring database
consistency and facilitating rollbacks.</li>
<li>
Employed the repository pattern to encapsulate data access, improving code maintainability and testability.
</li>
</ul>
</div>
</div>
<div class="project">
<h3>
<a href="https://github.com/rigaml/serverless-cron" target="_blank" aria-label="Open project link in new tab">
<span>Automated Stock Data Pipeline with Serverless AWS Lambda</span>
<i class="fas fa-external-link-alt"></i>
</a>
</h3>
<ul class="project-tech">
<li>Python</li>
<li>Request</li>
<li>Boto3/AWS client</li>
<li>Serverless</li>
<li>Localstack</li>
<li>NodeJS</li>
<li>Docker</li>
<li>Docker Compose</li>
</ul>
<div>
<ul class="project-description">
<li>
Built an AWS Lambda pipeline that automatically downloads stock data following a cron-based schedule,
reducing manual effort by 100% and running costs.</li>
<li>
Streamlined local development with Docker and Localstack, enabling local testing without incurring cloud
costs.</li>
<li>
Optimized data storage by structuring it in AWS S3 buckets.
</li>
<li>
Engineered the project to be easily deployable with the Serverless Framework.</li>
</ul>
</div>
</div>
<div class="project">
<h3>
<a href="https://github.com/rigaml/job-scraper" target="_blank" aria-label="Open project link in new tab">
<span>Job Boards Scraper</span>
<i class="fas fa-external-link-alt"></i>
</a>
</h3>
<ul class="project-tech">
<li>Python</li>
<li>FastAPI</li>
<li>Pydantic</li>
<li>Uvicorn</li>
<li>Selenium</li>
<li>Pytest</li>
<li>Poetry</li>
</ul>
<div>
<ul class="project-description">
<li>
Engineered a web scraping solution using Python and Selenium that automatically extracts detailed
job postings from JobServe, reducing manual job search time.</li>
<li>
Implemented a clean architecture pattern with dependency injection, abstract base classes, and repository
pattern demonstrating strong software design principles.</li>
<li>
Built a FastAPI service with Swagger documentation, providing access to stored
data through RESTful endpoints.</li>
<li>
Developed a robust data pipeline using SQLAlchemy and SQLite, ensuring reliable storage and retrieval of
job market information.</li>
</ul>
</div>
</div>
<!-- About Section -->
<section id="about" class="container">
<h2>About Me</h2>
<p>I’m an experienced software engineer with over 15 years of designing and building reliable, scalable systems
across a variety of languages and frameworks, contributing to the success of multiple companies.</p>
<p>What began a few years ago as a personal passion for Python has evolved into a professional focus. After years
of
exploring and applying Python in personal projects and professional tasks, I’ve spent the past year fully
immersing myself in the Python ecosystem, sharpening my skills with its libraries and frameworks.</p>
<p>I’m an honest, hardworking individual who thrives in collaborative environments. I enjoy solving complex
problems
and finding the best solutions for projects, teams, and businesses. I’m excited to bring my expertise,
enthusiasm,
and commitment to a dynamic company where I can collaborate on innovative solutions.</p>
</section>
<!-- Skills Section -->
<section id="skills" class="container">
<h2>Technical Skills</h2>
<ul>
<li><strong>Python Ecosystem:</strong>Django, Flask, FastAPI, SQLAlchemy, PyTorch, Pandas, Pytest, Poetry,
Pipenv, Pylint
</li>
<li><strong>Programming Languages:</strong>Python, C#/.NET Core, SQL, TypeScript</li>
<li><strong>Cloud & Data:</strong>AWS(Lambda, DynamoDB, RDS, SQS, SNS, S3), Elasticsearch</li>
<li><strong>DevOps & Tools:</strong>Docker, Terraform, Git, CircleCI, Serverless Framework, LocalStack, WireMock
</li>
<li><strong>Monitoring:</strong>Grafana, Splunk, Logz.io</li>
</ul>
</section>
<p class="portfolio-note">
These projects showcase my ongoing development and exploration of new technologies. If you have questions about
how the code works, how different pieces connect, suggestions, ideas, or criticisms, feel free to create an issue
or open a pull request on the specific repository. I always welcome constructive feedback and am interested in
ways to improve and learn together!
</p>
</section>
<!-- Contact Section -->
<section id="contact" class="container">
<h2>Contact</h2>
<p>Connect with me on <a href="https://www.linkedin.com/in/rigame/" target="_blank">LinkedIn</a>.</p>
</section>
<!-- Footer -->
<footer>
<p>© 2024 Ricardo Garcia</p>
<p>This site uses cookies for analytics purposes. By continuing to use this website, you consent to our use of
cookies. </p>
</footer>
</body>
</html>