-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_P2.py
222 lines (182 loc) · 9.2 KB
/
generate_P2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import csv
import cv2
import numpy
import os
import shutil
import torch
from pathlib import Path
from config import C_NAMES, CLASS_AGNOSTIC, CONF_THRESHOLD, IMG_SIZE, MODEL_NAME, NMS_THRESHOLD
from model_util import check_model, get_model_interface, predict
from util import decode_outputs, draw_all_bboxes_and_plot, postprocess, preprocess, vis_box
def create_black_lines(img, min_delta=0.15):
im_minus = img.copy()
im_plus = img.copy()
with open('line_indices.cfg', 'r') as f:
lines = f.readlines()
line_ids = [int(line_id.strip()) for line_id in lines]
for y in line_ids:
for x in range(0, IMG_SIZE[1]):
color = img[y][x]
color_minus = [max(int(color[0]*min_delta),0), max(int(color[1]*min_delta),0), max(int(color[2]*min_delta),0)]
color_plus = [min(int(color[0]),255), min(int(color[1]),255), min(int(color[2]),255)]
im_minus[y][x] = color_minus
im_plus[y][x] = color_plus
return im_minus, im_plus
def serialize_prop2(prop_path, model_path, im_minus, im_plus, raw_pred, raw_bbox_ind):
h, w, n_bboxes, n_data = get_model_interface(model_path)
n_channels = 3
# print(h, w, n_channels, n_bboxes, n_data,)
# Input variables declaration
with open(prop_path, 'w') as f:
# Input variables declaration
n_inp = 0
f.write(';Input variables:\n')
for y in range(h):
for x in range(w):
for k in range(n_channels):
f.write('(declare-const X_' + str(n_inp) + ' Real)' + '\n')
n_inp += 1
# Output variables declaration
n_out = 0
f.write('\n;Output variables:\n')
for b in range(n_bboxes):
for d in range(n_data):
f.write('(declare-const Y_' + str(n_out) + ' Real)' + '\n')
n_out += 1
# Input constraints definition
upper = im_plus.transpose((2, 0, 1))
lower = im_minus.transpose((2, 0, 1))
n_inp = 0
f.write('\n;Input constraints:\n')
for k in range(n_channels):
for y in range(h):
for x in range(w):
ub = upper[k][y][x]
lb = lower[k][y][x]
f.write('(assert (<= X_' + str(n_inp) + ' ' + str(ub) + '))' + '\n')
f.write('(assert (>= X_' + str(n_inp) + ' ' + str(lb) + '))' + '\n')
n_inp += 1
# Output constraints definition
pred = raw_pred.numpy()[0]
n_out = 0
f.write('\n;Output constraints:\n')
f.write('(assert (or \n')
for b in range(n_bboxes):
bbox = pred[b]
for d in range(n_data): # Constrain upper and lower bounds of each bounding box element
data = bbox[d]
ub = data
lb = data
if b == raw_bbox_ind:
if d == 4: # Object existence probability does not change below 50 or above 100 percent ... more than eps
assert(data >= 0 and data <= 1)
# ub = min(data*(1+eps), 1.0)
# lb = max(data*(1-eps), 0.0)
# constr = '\t(and (>= Y_' + str(n_out) + ' ' + str(ub) + ')) (and (<= Y_' + str(n_out) + ' ' + str(lb) + '))' + '\n'
lb = 0.5
ub = 1.0
constr = '\t(and (>= Y_' + str(n_out) + ' ' + str(ub) + ')) (and (<= Y_' + str(n_out) + ' ' + str(lb) + '))' + '\n'
f.write(constr)
elif d in [5,6]: # Class conditional probability allowed to fluctuate (all between 0 and 1)
assert(data >= 0 and data <= 1)
ub = 1.0
lb = 0.0
constr = '\t(and (>= Y_' + str(n_out) + ' ' + str(ub) + ')) (and (<= Y_' + str(n_out) + ' ' + str(lb) + '))' + '\n'
f.write(constr)
n_out += 1
if b == raw_bbox_ind: # Highest class conditional probability remains the highest despite of perturbation (negated property)
max_class_prob_ind = numpy.argmax(bbox[5:7])
n_out_max_class_prob = n_out - 2 + max_class_prob_ind
n_out_class_probs = [n for n in range(n_out - 2, n_out) if n != n_out_max_class_prob]
# f.write(f'HERE: Y_{n_out}')
for n in n_out_class_probs:
constr = '\t(and (>= Y_' + str(n) + ' Y_' + str(n_out_max_class_prob) + '))' + '\n'
f.write(constr)
f.write('))\n')
def process_single_image(img, bbox_ind, model_path, min_delta):
# reading and preprocessing input image
preproc_img, img_info = preprocess(img)
# print('image info:', img_info)
# print(preproc_img)
# print(preproc_img.shape)
# cv2.imshow('preprocessed image', preproc_img[0].detach().cpu().numpy().transpose(1, 2, 0).astype(numpy.uint8))
# cv2.imshow('original image', cv2.imread(img))
# cv2.waitKey()
# doing predictions with the model for the input image
raw_pred = predict(preproc_img, model_path) # until this point the prediction seems to be good
raw_pred = raw_pred[None, :, :]
# print('raw_pred:', raw_pred)
# print('raw_pred.shape:', raw_pred.shape)
# decoding (upscaling) bounding boxes
decoded_pred = decode_outputs(raw_pred, torch.FloatTensor) # until this point the decoded output tensor seems to be equivalent to the one that I get in the YOLOX code
# print('decoded_pred:', decoded_pred)
# print('decoded_pred.shape:', decoded_pred.shape)
# filtering bboxes and computing conf/obj scores
final_pred, indices_map = postprocess(decoded_pred, len(C_NAMES), CONF_THRESHOLD, NMS_THRESHOLD, CLASS_AGNOSTIC)
final_pred, indices_map = final_pred[0], indices_map[0]
# print('final_pred:', final_pred)
# print('final_pred.shape:', final_pred.shape)
# print('indices_map:', list(zip(range(len(indices_map)), indices_map)))
# draw_all_bboxes_and_plot(preproc_img, final_pred, 'all predictions')
idx = bbox_ind
# print('final_pred before:', final_pred)
prediction_filtered = [pred for pred in final_pred if pred[-1] < 0.1]
# print('final_pred after:', prediction_filtered)
prediction = prediction_filtered[idx]
# print(idx, 'prediction:', prediction)
# draw_all_bboxes_and_plot(preproc_img, [prediction], 'attacked prediction')
# print('raw prediction:', raw_pred[0][indices_map[idx]])
# print('decoded prediction:', decoded_pred[0][indices_map[idx]])
# for delta in sorted([0.01, 0.05, 0.10, 0.25], reverse=True):
_allmost_preproc_img = preproc_img[0].detach().cpu().numpy().transpose(1, 2, 0).astype(numpy.uint8).copy()
img_minus, img_plus = create_black_lines(_allmost_preproc_img, min_delta)
# pred_img = vis_box(_allmost_preproc_img, prediction[0:4], prediction[4] * prediction[5], int(prediction[-1]))
# cv2.imshow(f'pred_img_{min_delta}', pred_img)
# cv2.imshow(f'img_minus_{min_delta}', img_minus)
# cv2.imshow(f'img_plus_{min_delta}', img_plus)
# cv2.waitKey()
#### attack
# preproc_img, img_info = preprocess('./img_Compressed_23-06-2023_SurveyDataset-RealTimeSSS528_black_lines_0_delta_0.45.png')
# raw_pred = predict(preproc_img, model_path) # until this point the prediction seems to be good
# raw_pred = raw_pred[None, :, :]
# decoded_pred = decode_outputs(raw_pred, torch.FloatTensor)
# final_pred, indices_map = postprocess(decoded_pred, len(C_NAMES), CONF_THRESHOLD, NMS_THRESHOLD, CLASS_AGNOSTIC)
# final_pred, indices_map = final_pred[0], indices_map[0]
# draw_all_bboxes_and_plot(preproc_img, final_pred, 'adversarial attack')
#### attack
prop_fn = f'img_{Path(img_info["file_name"]).stem}_black_lines_{idx}_min_delta_{min_delta}.vnnlib'
prop_path = str(Path('./vnnlib').joinpath(Path(prop_fn)))
serialize_prop2(prop_path, model_path, img_minus, img_plus, raw_pred, indices_map[idx])
with open('instances.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([f'onnx/{MODEL_NAME}', prop_path, '125'])
print('Property P1 generated under path:', prop_path)
def run(img_path, bbox_ind, min_delta):
prop_fold_path = 'vnnlib'
instances_fname = 'instances.csv'
if os.path.exists(prop_fold_path) and os.path.isdir(prop_fold_path):
shutil.rmtree(prop_fold_path)
if os.path.exists(instances_fname):
os.remove(instances_fname)
os.mkdir(prop_fold_path)
# Perform prediction
model_path = f'onnx/{MODEL_NAME}'
print('Model: ' + model_path)
check_model(model_path)
print('Class names:', C_NAMES)
process_single_image(img_path, bbox_ind, model_path, min_delta)
return
def main(opt):
run(**vars(opt))
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('img_path', type=str, help='input image path')
parser.add_argument('bbox_ind', type=int, help='index of the bounding box')
parser.add_argument('min_delta', type=float, help='perturbation upper bound')
opt = parser.parse_args()
print('CMD Arguments:', opt)
return opt
if __name__=='__main__':
opt = parse_opt()
main(opt)