|
| 1 | +_base_ = [ |
| 2 | + '../_base_/models/mask_rcnn_r50_fpn.py', |
| 3 | + '../_base_/datasets/coco_instance.py', |
| 4 | + '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
| 5 | +] |
| 6 | +norm_cfg = dict(type='BN', requires_grad=True) |
| 7 | +model = dict( |
| 8 | + backbone=dict(norm_cfg=norm_cfg, norm_eval=False), |
| 9 | + neck=dict( |
| 10 | + type='FPN', |
| 11 | + in_channels=[256, 512, 1024, 2048], |
| 12 | + out_channels=256, |
| 13 | + norm_cfg=norm_cfg, |
| 14 | + num_outs=5), |
| 15 | + roi_head=dict( |
| 16 | + bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) |
| 17 | +dataset_type = 'CocoDataset' |
| 18 | +data_root = 'data/coco/' |
| 19 | +img_norm_cfg = dict( |
| 20 | + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
| 21 | +train_pipeline = [ |
| 22 | + dict(type='LoadImageFromFile'), |
| 23 | + dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
| 24 | + dict( |
| 25 | + type='Resize', |
| 26 | + img_scale=(640, 640), |
| 27 | + ratio_range=(0.8, 1.2), |
| 28 | + keep_ratio=True), |
| 29 | + dict(type='RandomCrop', crop_size=(640, 640)), |
| 30 | + dict(type='RandomFlip', flip_ratio=0.5), |
| 31 | + dict(type='Normalize', **img_norm_cfg), |
| 32 | + dict(type='Pad', size=(640, 640)), |
| 33 | + dict(type='DefaultFormatBundle'), |
| 34 | + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
| 35 | +] |
| 36 | +test_pipeline = [ |
| 37 | + dict(type='LoadImageFromFile'), |
| 38 | + dict( |
| 39 | + type='MultiScaleFlipAug', |
| 40 | + img_scale=(640, 640), |
| 41 | + flip=False, |
| 42 | + transforms=[ |
| 43 | + dict(type='Resize', keep_ratio=True), |
| 44 | + dict(type='RandomFlip'), |
| 45 | + dict(type='Normalize', **img_norm_cfg), |
| 46 | + dict(type='Pad', size_divisor=64), |
| 47 | + dict(type='ImageToTensor', keys=['img']), |
| 48 | + dict(type='Collect', keys=['img']), |
| 49 | + ]) |
| 50 | +] |
| 51 | +data = dict( |
| 52 | + samples_per_gpu=8, |
| 53 | + workers_per_gpu=4, |
| 54 | + train=dict(pipeline=train_pipeline), |
| 55 | + val=dict(pipeline=test_pipeline), |
| 56 | + test=dict(pipeline=test_pipeline)) |
| 57 | +# learning policy |
| 58 | +optimizer = dict( |
| 59 | + type='SGD', |
| 60 | + lr=0.08, |
| 61 | + momentum=0.9, |
| 62 | + weight_decay=0.0001, |
| 63 | + paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) |
| 64 | +optimizer_config = dict(grad_clip=None) |
| 65 | +# learning policy |
| 66 | +lr_config = dict( |
| 67 | + policy='step', |
| 68 | + warmup='linear', |
| 69 | + warmup_iters=1000, |
| 70 | + warmup_ratio=0.1, |
| 71 | + step=[30, 40]) |
| 72 | +# runtime settings |
| 73 | +runner = dict(max_epochs=50) |
| 74 | +evaluation = dict(interval=2) |
0 commit comments