Skip to content

Files

Latest commit

3a6a49d · Apr 6, 2023

History

History
This branch is 1 commit ahead of open-mmlab/mmdetection:main.

queryinst

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Sep 26, 2022
Apr 6, 2023
Aug 26, 2022
Aug 26, 2022
Jul 19, 2022
Mar 17, 2023
Mar 17, 2023

QueryInst

Instances as Queries

Abstract

We present QueryInst, a new perspective for instance segmentation. QueryInst is a multi-stage end-to-end system that treats instances of interest as learnable queries, enabling query based object detectors, e.g., Sparse R-CNN, to have strong instance segmentation performance. The attributes of instances such as categories, bounding boxes, instance masks, and instance association embeddings are represented by queries in a unified manner. In QueryInst, a query is shared by both detection and segmentation via dynamic convolutions and driven by parallelly-supervised multi-stage learning. We conduct extensive experiments on three challenging benchmarks, i.e., COCO, CityScapes, and YouTube-VIS to evaluate the effectiveness of QueryInst in object detection, instance segmentation, and video instance segmentation tasks. For the first time, we demonstrate that a simple end-to-end query based framework can achieve the state-of-the-art performance in various instance-level recognition tasks.

Results and Models

Model Backbone Style Lr schd Number of Proposals Multi-Scale RandomCrop box AP mask AP Config Download
QueryInst R-50-FPN pytorch 1x 100 False False 42.0 37.5 config model | log
QueryInst R-50-FPN pytorch 3x 100 True False 44.8 39.8 config model | log
QueryInst R-50-FPN pytorch 3x 300 True True 47.5 41.7 config model | log
QueryInst R-101-FPN pytorch 3x 100 True False 46.4 41.0 config model | log
QueryInst R-101-FPN pytorch 3x 300 True True 49.0 42.9 config model | log

Citation

@InProceedings{Fang_2021_ICCV,
    author    = {Fang, Yuxin and Yang, Shusheng and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu},
    title     = {Instances As Queries},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {6910-6919}
}