Skip to content
This repository was archived by the owner on Feb 21, 2025. It is now read-only.

Commit e452179

Browse files
mufeilichang-lnv-dlasalleyaox12isratnisa
authored
[Deprecation] Dataset Attributes (dmlc#4666)
* Update from master (dmlc#4584) * [Example][Refactor] Refactor graphsage multigpu and full-graph example (dmlc#4430) * Add refactors for multi-gpu and full-graph example * Fix format * Update * Update * Update * [Cleanup] Remove async_transferer (dmlc#4505) * Remove async_transferer * remove test * Remove AsyncTransferer Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Xin Yao <[email protected]> * [Cleanup] Remove duplicate entries of CUB submodule (issue# 4395) (dmlc#4499) * remove third_part/cub * remove from third_party Co-authored-by: Israt Nisa <[email protected]> Co-authored-by: Xin Yao <[email protected]> * [Bug] Enable turn on/off libxsmm at runtime (dmlc#4455) * enable turn on/off libxsmm at runtime by adding a global config and related API Co-authored-by: Ubuntu <[email protected]> * [Feature] Unify the cuda stream used in core library (dmlc#4480) * Use an internal cuda stream for CopyDataFromTo * small fix white space * Fix to compile * Make stream optional in copydata for compile * fix lint issue * Update cub functions to use internal stream * Lint check * Update CopyTo/CopyFrom/CopyFromTo to use internal stream * Address comments * Fix backward CUDA stream * Avoid overloading CopyFromTo() * Minor comment update * Overload copydatafromto in cuda device api Co-authored-by: xiny <[email protected]> * [Feature] Added exclude_self and output_batch to knn graph construction (Issues dmlc#4323 dmlc#4316) (dmlc#4389) * * Added "exclude_self" and "output_batch" options to knn_graph and segmented_knn_graph * Updated out-of-date comments on remove_edges and remove_self_loop, since they now preserve batch information * * Changed defaults on new knn_graph and segmented_knn_graph function parameters, for compatibility; pytorch/test_geometry.py was failing * * Added test to ensure dgl.remove_self_loop function correctly updates batch information * * Added new knn_graph and segmented_knn_graph parameters to dgl.nn.KNNGraph and dgl.nn.SegmentedKNNGraph * * Formatting * * Oops, I missed the one in segmented_knn_graph when I fixed the similar thing in knn_graph * * Fixed edge case handling when invalid k specified, since it still needs to be handled consistently for tests to pass * Fixed context of batch info, since it must match the context of the input position data for remove_self_loop to succeed * * Fixed batch info resulting from knn_graph when output_batch is true, for case of 3D input tensor, representing multiple segments * * Added testing of new exclude_self and output_batch parameters on knn_graph and segmented_knn_graph, and their wrappers, KNNGraph and SegmentedKNNGraph, into the test_knn_cuda test * * Added doc comments for new parameters * * Added correct handling for uncommon case of k or more coincident points when excluding self edges in knn_graph and segmented_knn_graph * Added test cases for more than k coincident points * * Updated doc comments for output_batch parameters for clarity * * Linter formatting fixes * * Extracted out common function for test_knn_cpu and test_knn_cuda, to add the new test cases to test_knn_cpu * * Rewording in doc comments * * Removed output_batch parameter from knn_graph and segmented_knn_graph, in favour of always setting the batch information, except in knn_graph if x is a 2D tensor Co-authored-by: Minjie Wang <[email protected]> * [CI] only known devs are authorized to trigger CI (dmlc#4518) * [CI] only known devs are authorized to trigger CI * fix if author is null * add comments * [Readability] Auto fix setup.py and update-version.py (dmlc#4446) * Auto fix update-version * Auto fix setup.py * Auto fix update-version * Auto fix setup.py * [Doc] Change random.py to random_partition.py in guide on distributed partition pipeline (dmlc#4438) * Update distributed-preprocessing.rst * Update Co-authored-by: Ubuntu <[email protected]> * fix unpinning when tensoradaptor is not available (dmlc#4450) * [Doc] fix print issue in tutorial (dmlc#4459) * [Example][Refactor] Refactor RGCN example (dmlc#4327) * Refactor full graph entity classification * Refactor rgcn with sampling * README update * Update * Results update * Respect default setting of self_loop=false in entity.py * Update * Update README * Update for multi-gpu * Update * [doc] fix invalid link in user guide (dmlc#4468) * [Example] directional_GSN for ogbg-molpcba (dmlc#4405) * version-1 * version-2 * version-3 * update examples/README * Update .gitignore * update performance in README, delete scripts * 1st approving review * 2nd approving review Co-authored-by: Mufei Li <[email protected]> * Clarify the message name, which is 'm'. (dmlc#4462) Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Rhett Ying <[email protected]> * [Refactor] Auto fix view.py. (dmlc#4461) Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Minjie Wang <[email protected]> * [Example] SEAL for OGBL (dmlc#4291) * [Example] SEAL for OGBL * update index * update * fix readme typo * add seal sampler * modify set ops * prefetch * efficiency test * update * optimize * fix ScatterAdd dtype issue * update sampler style * update Co-authored-by: Quan Gan <[email protected]> * [CI] use https instead of http (dmlc#4488) * [BugFix] fix crash due to incorrect dtype in dgl.to_block() (dmlc#4487) * [BugFix] fix crash due to incorrect dtype in dgl.to_block() * fix test failure in TF * [Feature] Make TensorAdapter Stream Aware (dmlc#4472) * Allocate tensors in DGL's current stream * make tensoradaptor stream-aware * replace TAemtpy with cpu allocator * fix typo * try fix cpu allocation * clean header * redirect AllocDataSpace as well * resolve comments * [Build][Doc] Specify the sphinx version (dmlc#4465) Co-authored-by: Minjie Wang <[email protected]> * reformat * reformat * Auto fix update-version * Auto fix setup.py * reformat * reformat Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Rhett Ying <[email protected]> Co-authored-by: Mufei Li <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Chang Liu <[email protected]> Co-authored-by: Zhiteng Li <[email protected]> Co-authored-by: Minjie Wang <[email protected]> Co-authored-by: rudongyu <[email protected]> Co-authored-by: Quan Gan <[email protected]> * Move mock version of dgl_sparse library to DGL main repo (dmlc#4524) * init * Add api doc for sparse library * support op btwn matrices with differnt sparsity * Fixed docstring * addresses comments * lint check * change keyword format to fmt Co-authored-by: Israt Nisa <[email protected]> * [DistPart] expose timeout config for process group (dmlc#4532) * [DistPart] expose timeout config for process group * refine code * Update tools/distpartitioning/data_proc_pipeline.py Co-authored-by: Minjie Wang <[email protected]> Co-authored-by: Minjie Wang <[email protected]> * [Feature] Import PyTorch's CUDA stream management (dmlc#4503) * add set_stream * add .record_stream for NDArray and HeteroGraph * refactor dgl stream Python APIs * test record_stream * add unit test for record stream * use pytorch's stream * fix lint * fix cpu build * address comments * address comments * add record stream tests for dgl.graph * record frames and update dataloder * add docstring * update frame * add backend check for record_stream * remove CUDAThreadEntry::stream * record stream for newly created formats * fix bug * fix cpp test * fix None c_void_p to c_handle * [examples]educe memory consumption (dmlc#4558) * [examples]educe memory consumption * reffine help message * refine * [Feature][REVIEW] Enable DGL cugaph nightly CI (dmlc#4525) * Added cugraph nightly scripts * Removed nvcr.io//nvidia/pytorch:22.04-py3 reference Co-authored-by: Rhett Ying <[email protected]> * Revert "[Feature][REVIEW] Enable DGL cugaph nightly CI (dmlc#4525)" (dmlc#4563) This reverts commit ec171c6. * [Misc] Add flake8 lint workflow. (dmlc#4566) * Add pyproject.toml for autopep8. * Add pyproject.toml for autopep8. * Add flake8 annotation in workflow. * remove * add * clean up Co-authored-by: Steve <[email protected]> * [Misc] Try use official pylint workflow. (dmlc#4568) * polish update_version * update pylint workflow. * add * revert. Co-authored-by: Steve <[email protected]> * [CI] refine stage logic (dmlc#4565) * [CI] refine stage logic * refine * refine * remove (dmlc#4570) Co-authored-by: Steve <[email protected]> * Add Pylint workflow for flake8. (dmlc#4571) * remove * Add pylint. Co-authored-by: Steve <[email protected]> * [Misc] Update the python version in Pylint workflow for flake8. (dmlc#4572) * remove * Add pylint. * Change the python version for pylint. Co-authored-by: Steve <[email protected]> * Update pylint. (dmlc#4574) Co-authored-by: Steve <[email protected]> * [Misc] Use another workflow. (dmlc#4575) * Update pylint. * Use another workflow. Co-authored-by: Steve <[email protected]> * Update pylint. (dmlc#4576) Co-authored-by: Steve <[email protected]> * Update pylint.yml * Update pylint.yml * Delete pylint.yml * [Misc]Add pyproject.toml for autopep8 & black. (dmlc#4543) * Add pyproject.toml for autopep8. * Add pyproject.toml for autopep8. Co-authored-by: Steve <[email protected]> * [Feature] Bump DLPack to v0.7 and decouple DLPack from the core library (dmlc#4454) * rename `DLContext` to `DGLContext` * rename `kDLGPU` to `kDLCUDA` * replace DLTensor with DGLArray * fix linting * Unify DGLType and DLDataType to DGLDataType * Fix FFI * rename DLDeviceType to DGLDeviceType * decouple dlpack from the core library * fix bug * fix lint * fix merge * fix build * address comments * rename dl_converter to dlpack_convert * remove redundant comments Co-authored-by: Chang Liu <[email protected]> Co-authored-by: nv-dlasalle <[email protected]> Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Israt Nisa <[email protected]> Co-authored-by: Israt Nisa <[email protected]> Co-authored-by: peizhou001 <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: ndickson-nvidia <[email protected]> Co-authored-by: Minjie Wang <[email protected]> Co-authored-by: Rhett Ying <[email protected]> Co-authored-by: Hongzhi (Steve), Chen <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Zhiteng Li <[email protected]> Co-authored-by: rudongyu <[email protected]> Co-authored-by: Quan Gan <[email protected]> Co-authored-by: Vibhu Jawa <[email protected]> * [Deprecation] Dataset Attributes (dmlc#4546) * Update * CI * CI * Update Co-authored-by: Ubuntu <[email protected]> * [Example] Bug Fix (dmlc#4665) * Update * CI * CI * Update * Update Co-authored-by: Ubuntu <[email protected]> * Update Co-authored-by: Chang Liu <[email protected]> Co-authored-by: nv-dlasalle <[email protected]> Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Xin Yao <[email protected]> Co-authored-by: Israt Nisa <[email protected]> Co-authored-by: Israt Nisa <[email protected]> Co-authored-by: peizhou001 <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: ndickson-nvidia <[email protected]> Co-authored-by: Minjie Wang <[email protected]> Co-authored-by: Rhett Ying <[email protected]> Co-authored-by: Hongzhi (Steve), Chen <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Zhiteng Li <[email protected]> Co-authored-by: rudongyu <[email protected]> Co-authored-by: Quan Gan <[email protected]> Co-authored-by: Vibhu Jawa <[email protected]>
1 parent f846d90 commit e452179

File tree

11 files changed

+45
-518
lines changed

11 files changed

+45
-518
lines changed

examples/pytorch/dgi/train.py

+11-11
Original file line numberDiff line numberDiff line change
@@ -23,18 +23,18 @@ def main(args):
2323
# load and preprocess dataset
2424
data = load_data(args)
2525
g = data[0]
26-
features = torch.FloatTensor(data.features)
27-
labels = torch.LongTensor(data.labels)
26+
features = torch.FloatTensor(g.ndata['feat'])
27+
labels = torch.LongTensor(g.ndata['label'])
2828
if hasattr(torch, 'BoolTensor'):
29-
train_mask = torch.BoolTensor(data.train_mask)
30-
val_mask = torch.BoolTensor(data.val_mask)
31-
test_mask = torch.BoolTensor(data.test_mask)
29+
train_mask = torch.BoolTensor(g.ndata['train_mask'])
30+
val_mask = torch.BoolTensor(g.ndata['val_mask'])
31+
test_mask = torch.BoolTensor(g.ndata['test_mask'])
3232
else:
33-
train_mask = torch.ByteTensor(data.train_mask)
34-
val_mask = torch.ByteTensor(data.val_mask)
35-
test_mask = torch.ByteTensor(data.test_mask)
33+
train_mask = torch.ByteTensor(g.ndata['train_mask'])
34+
val_mask = torch.ByteTensor(g.ndata['val_mask'])
35+
test_mask = torch.ByteTensor(g.ndata['test_mask'])
3636
in_feats = features.shape[1]
37-
n_classes = data.num_labels
37+
n_classes = data.num_classes
3838
n_edges = g.number_of_edges()
3939

4040
if args.gpu < 0:
@@ -130,7 +130,7 @@ def main(args):
130130
loss = F.nll_loss(preds[train_mask], labels[train_mask])
131131
loss.backward()
132132
classifier_optimizer.step()
133-
133+
134134
if epoch >= 3:
135135
dur.append(time.time() - t0)
136136

@@ -171,5 +171,5 @@ def main(args):
171171
parser.set_defaults(self_loop=False)
172172
args = parser.parse_args()
173173
print(args)
174-
174+
175175
main(args)

python/dgl/data/citation_graph.py

-172
Original file line numberDiff line numberDiff line change
@@ -251,31 +251,6 @@ def num_classes(self):
251251
We preserve these properties for compatability.
252252
"""
253253

254-
@property
255-
def train_mask(self):
256-
deprecate_property('dataset.train_mask', 'g.ndata[\'train_mask\']')
257-
return F.asnumpy(self._g.ndata['train_mask'])
258-
259-
@property
260-
def val_mask(self):
261-
deprecate_property('dataset.val_mask', 'g.ndata[\'val_mask\']')
262-
return F.asnumpy(self._g.ndata['val_mask'])
263-
264-
@property
265-
def test_mask(self):
266-
deprecate_property('dataset.test_mask', 'g.ndata[\'test_mask\']')
267-
return F.asnumpy(self._g.ndata['test_mask'])
268-
269-
@property
270-
def labels(self):
271-
deprecate_property('dataset.label', 'g.ndata[\'label\']')
272-
return F.asnumpy(self._g.ndata['label'])
273-
274-
@property
275-
def features(self):
276-
deprecate_property('dataset.feat', 'g.ndata[\'feat\']')
277-
return self._g.ndata['feat']
278-
279254
@property
280255
def reverse_edge(self):
281256
return self._reverse_edge
@@ -306,43 +281,6 @@ def _sample_mask(idx, l):
306281
class CoraGraphDataset(CitationGraphDataset):
307282
r""" Cora citation network dataset.
308283
309-
.. deprecated:: 0.5.0
310-
311-
- ``graph`` is deprecated, it is replaced by:
312-
313-
>>> dataset = CoraGraphDataset()
314-
>>> graph = dataset[0]
315-
316-
- ``train_mask`` is deprecated, it is replaced by:
317-
318-
>>> dataset = CoraGraphDataset()
319-
>>> graph = dataset[0]
320-
>>> train_mask = graph.ndata['train_mask']
321-
322-
- ``val_mask`` is deprecated, it is replaced by:
323-
324-
>>> dataset = CoraGraphDataset()
325-
>>> graph = dataset[0]
326-
>>> val_mask = graph.ndata['val_mask']
327-
328-
- ``test_mask`` is deprecated, it is replaced by:
329-
330-
>>> dataset = CoraGraphDataset()
331-
>>> graph = dataset[0]
332-
>>> test_mask = graph.ndata['test_mask']
333-
334-
- ``labels`` is deprecated, it is replaced by:
335-
336-
>>> dataset = CoraGraphDataset()
337-
>>> graph = dataset[0]
338-
>>> labels = graph.ndata['label']
339-
340-
- ``feat`` is deprecated, it is replaced by:
341-
342-
>>> dataset = CoraGraphDataset()
343-
>>> graph = dataset[0]
344-
>>> feat = graph.ndata['feat']
345-
346284
Nodes mean paper and edges mean citation
347285
relationships. Each node has a predefined
348286
feature with 1433 dimensions. The dataset is
@@ -383,18 +321,6 @@ class CoraGraphDataset(CitationGraphDataset):
383321
----------
384322
num_classes: int
385323
Number of label classes
386-
graph: networkx.DiGraph
387-
Graph structure
388-
train_mask: numpy.ndarray
389-
Mask of training nodes
390-
val_mask: numpy.ndarray
391-
Mask of validation nodes
392-
test_mask: numpy.ndarray
393-
Mask of test nodes
394-
labels: numpy.ndarray
395-
Ground truth labels of each node
396-
features: Tensor
397-
Node features
398324
399325
Notes
400326
-----
@@ -454,43 +380,6 @@ def __len__(self):
454380
class CiteseerGraphDataset(CitationGraphDataset):
455381
r""" Citeseer citation network dataset.
456382
457-
.. deprecated:: 0.5.0
458-
459-
- ``graph`` is deprecated, it is replaced by:
460-
461-
>>> dataset = CiteseerGraphDataset()
462-
>>> graph = dataset[0]
463-
464-
- ``train_mask`` is deprecated, it is replaced by:
465-
466-
>>> dataset = CiteseerGraphDataset()
467-
>>> graph = dataset[0]
468-
>>> train_mask = graph.ndata['train_mask']
469-
470-
- ``val_mask`` is deprecated, it is replaced by:
471-
472-
>>> dataset = CiteseerGraphDataset()
473-
>>> graph = dataset[0]
474-
>>> val_mask = graph.ndata['val_mask']
475-
476-
- ``test_mask`` is deprecated, it is replaced by:
477-
478-
>>> dataset = CiteseerGraphDataset()
479-
>>> graph = dataset[0]
480-
>>> test_mask = graph.ndata['test_mask']
481-
482-
- ``labels`` is deprecated, it is replaced by:
483-
484-
>>> dataset = CiteseerGraphDataset()
485-
>>> graph = dataset[0]
486-
>>> labels = graph.ndata['label']
487-
488-
- ``feat`` is deprecated, it is replaced by:
489-
490-
>>> dataset = CiteseerGraphDataset()
491-
>>> graph = dataset[0]
492-
>>> feat = graph.ndata['feat']
493-
494383
Nodes mean scientific publications and edges
495384
mean citation relationships. Each node has a
496385
predefined feature with 3703 dimensions. The
@@ -531,18 +420,6 @@ class CiteseerGraphDataset(CitationGraphDataset):
531420
----------
532421
num_classes: int
533422
Number of label classes
534-
graph: networkx.DiGraph
535-
Graph structure
536-
train_mask: numpy.ndarray
537-
Mask of training nodes
538-
val_mask: numpy.ndarray
539-
Mask of validation nodes
540-
test_mask: numpy.ndarray
541-
Mask of test nodes
542-
labels: numpy.ndarray
543-
Ground truth labels of each node
544-
features: Tensor
545-
Node features
546423
547424
Notes
548425
-----
@@ -605,43 +482,6 @@ def __len__(self):
605482
class PubmedGraphDataset(CitationGraphDataset):
606483
r""" Pubmed citation network dataset.
607484
608-
.. deprecated:: 0.5.0
609-
610-
- ``graph`` is deprecated, it is replaced by:
611-
612-
>>> dataset = PubmedGraphDataset()
613-
>>> graph = dataset[0]
614-
615-
- ``train_mask`` is deprecated, it is replaced by:
616-
617-
>>> dataset = PubmedGraphDataset()
618-
>>> graph = dataset[0]
619-
>>> train_mask = graph.ndata['train_mask']
620-
621-
- ``val_mask`` is deprecated, it is replaced by:
622-
623-
>>> dataset = PubmedGraphDataset()
624-
>>> graph = dataset[0]
625-
>>> val_mask = graph.ndata['val_mask']
626-
627-
- ``test_mask`` is deprecated, it is replaced by:
628-
629-
>>> dataset = PubmedGraphDataset()
630-
>>> graph = dataset[0]
631-
>>> test_mask = graph.ndata['test_mask']
632-
633-
- ``labels`` is deprecated, it is replaced by:
634-
635-
>>> dataset = PubmedGraphDataset()
636-
>>> graph = dataset[0]
637-
>>> labels = graph.ndata['label']
638-
639-
- ``feat`` is deprecated, it is replaced by:
640-
641-
>>> dataset = PubmedGraphDataset()
642-
>>> graph = dataset[0]
643-
>>> feat = graph.ndata['feat']
644-
645485
Nodes mean scientific publications and edges
646486
mean citation relationships. Each node has a
647487
predefined feature with 500 dimensions. The
@@ -682,18 +522,6 @@ class PubmedGraphDataset(CitationGraphDataset):
682522
----------
683523
num_classes: int
684524
Number of label classes
685-
graph: networkx.DiGraph
686-
Graph structure
687-
train_mask: numpy.ndarray
688-
Mask of training nodes
689-
val_mask: numpy.ndarray
690-
Mask of validation nodes
691-
test_mask: numpy.ndarray
692-
Mask of test nodes
693-
labels: numpy.ndarray
694-
Ground truth labels of each node
695-
features: Tensor
696-
Node features
697525
698526
Notes
699527
-----

python/dgl/data/gnn_benchmark.py

-50
Original file line numberDiff line numberDiff line change
@@ -106,11 +106,6 @@ def num_classes(self):
106106
"""Number of classes."""
107107
raise NotImplementedError
108108

109-
@property
110-
def data(self):
111-
deprecate_property('dataset.data', 'dataset[0]')
112-
return self._data
113-
114109
def __getitem__(self, idx):
115110
r""" Get graph by index
116111
@@ -142,13 +137,6 @@ def __len__(self):
142137
class CoraFullDataset(GNNBenchmarkDataset):
143138
r"""CORA-Full dataset for node classification task.
144139
145-
.. deprecated:: 0.5.0
146-
147-
- ``data`` is deprecated, it is repalced by:
148-
149-
>>> dataset = CoraFullDataset()
150-
>>> graph = dataset[0]
151-
152140
Extended Cora dataset. Nodes represent paper and edges represent citations.
153141
154142
Reference: `<https://github.com/shchur/gnn-benchmark#datasets>`_
@@ -179,8 +167,6 @@ class CoraFullDataset(GNNBenchmarkDataset):
179167
----------
180168
num_classes : int
181169
Number of classes for each node.
182-
data : list
183-
A list of DGLGraph objects
184170
185171
Examples
186172
--------
@@ -211,13 +197,6 @@ def num_classes(self):
211197
class CoauthorCSDataset(GNNBenchmarkDataset):
212198
r""" 'Computer Science (CS)' part of the Coauthor dataset for node classification task.
213199
214-
.. deprecated:: 0.5.0
215-
216-
- ``data`` is deprecated, it is repalced by:
217-
218-
>>> dataset = CoauthorCSDataset()
219-
>>> graph = dataset[0]
220-
221200
Coauthor CS and Coauthor Physics are co-authorship graphs based on the Microsoft Academic Graph
222201
from the KDD Cup 2016 challenge. Here, nodes are authors, that are connected by an edge if they
223202
co-authored a paper; node features represent paper keywords for each author’s papers, and class
@@ -251,8 +230,6 @@ class CoauthorCSDataset(GNNBenchmarkDataset):
251230
----------
252231
num_classes : int
253232
Number of classes for each node.
254-
data : list
255-
A list of DGLGraph objects
256233
257234
Examples
258235
--------
@@ -283,13 +260,6 @@ def num_classes(self):
283260
class CoauthorPhysicsDataset(GNNBenchmarkDataset):
284261
r""" 'Physics' part of the Coauthor dataset for node classification task.
285262
286-
.. deprecated:: 0.5.0
287-
288-
- ``data`` is deprecated, it is repalced by:
289-
290-
>>> dataset = CoauthorPhysicsDataset()
291-
>>> graph = dataset[0]
292-
293263
Coauthor CS and Coauthor Physics are co-authorship graphs based on the Microsoft Academic Graph
294264
from the KDD Cup 2016 challenge. Here, nodes are authors, that are connected by an edge if they
295265
co-authored a paper; node features represent paper keywords for each author’s papers, and class
@@ -323,8 +293,6 @@ class CoauthorPhysicsDataset(GNNBenchmarkDataset):
323293
----------
324294
num_classes : int
325295
Number of classes for each node.
326-
data : list
327-
A list of DGLGraph objects
328296
329297
Examples
330298
--------
@@ -355,13 +323,6 @@ def num_classes(self):
355323
class AmazonCoBuyComputerDataset(GNNBenchmarkDataset):
356324
r""" 'Computer' part of the AmazonCoBuy dataset for node classification task.
357325
358-
.. deprecated:: 0.5.0
359-
360-
- ``data`` is deprecated, it is repalced by:
361-
362-
>>> dataset = AmazonCoBuyComputerDataset()
363-
>>> graph = dataset[0]
364-
365326
Amazon Computers and Amazon Photo are segments of the Amazon co-purchase graph [McAuley et al., 2015],
366327
where nodes represent goods, edges indicate that two goods are frequently bought together, node
367328
features are bag-of-words encoded product reviews, and class labels are given by the product category.
@@ -394,8 +355,6 @@ class AmazonCoBuyComputerDataset(GNNBenchmarkDataset):
394355
----------
395356
num_classes : int
396357
Number of classes for each node.
397-
data : list
398-
A list of DGLGraph objects
399358
400359
Examples
401360
--------
@@ -426,13 +385,6 @@ def num_classes(self):
426385
class AmazonCoBuyPhotoDataset(GNNBenchmarkDataset):
427386
r"""AmazonCoBuy dataset for node classification task.
428387
429-
.. deprecated:: 0.5.0
430-
431-
- ``data`` is deprecated, it is repalced by:
432-
433-
>>> dataset = AmazonCoBuyPhotoDataset()
434-
>>> graph = dataset[0]
435-
436388
Amazon Computers and Amazon Photo are segments of the Amazon co-purchase graph [McAuley et al., 2015],
437389
where nodes represent goods, edges indicate that two goods are frequently bought together, node
438390
features are bag-of-words encoded product reviews, and class labels are given by the product category.
@@ -465,8 +417,6 @@ class AmazonCoBuyPhotoDataset(GNNBenchmarkDataset):
465417
----------
466418
num_classes : int
467419
Number of classes for each node.
468-
data : list
469-
A list of DGLGraph objects
470420
471421
Examples
472422
--------

0 commit comments

Comments
 (0)