This repository was archived by the owner on Feb 21, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassify.py
67 lines (56 loc) · 2.11 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from statistics import mean
import torch
import torch.nn as nn
import torch.nn.functional as F
class LogisticRegressionClassifier(nn.Module):
"""Define a logistic regression classifier to evaluate the quality of embedding results"""
def __init__(self, nfeat, nclass):
super(LogisticRegressionClassifier, self).__init__()
self.lrc = nn.Linear(nfeat, nclass)
def forward(self, x):
preds = self.lrc(x)
return preds
def _evaluate(model, features, labels, test_mask):
model.eval()
with torch.no_grad():
logits = model(features)
logits = logits[test_mask]
labels = labels[test_mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def _train_test_with_lrc(model, features, labels, train_mask, test_mask):
"""Under the pre-defined balanced train/test label setting, train a lrc to evaluate the embedding results."""
optimizer = torch.optim.Adam(model.parameters(), lr=0.2, weight_decay=5e-06)
for _ in range(100):
model.train()
optimizer.zero_grad()
output = model(features)
loss_train = F.cross_entropy(output[train_mask], labels[train_mask])
loss_train.backward()
optimizer.step()
return _evaluate(
model=model, features=features, labels=labels, test_mask=test_mask
)
def evaluate_embeds(
features, labels, train_mask, test_mask, n_classes, cuda, test_times=10
):
print(
"Training a logistic regression classifier with the pre-defined train/test split setting ..."
)
res_list = []
for _ in range(test_times):
model = LogisticRegressionClassifier(
nfeat=features.shape[1], nclass=n_classes
)
if cuda:
model.cuda()
res = _train_test_with_lrc(
model=model,
features=features,
labels=labels,
train_mask=train_mask,
test_mask=test_mask,
)
res_list.append(res)
return mean(res_list)