This repository was archived by the owner on Feb 21, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
202 lines (177 loc) · 6.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import torch as th
import torch.nn.functional as F
import torch.optim as optim
from dataloader import GASDataset
from model import GAS
from sklearn.metrics import f1_score, precision_recall_curve, roc_auc_score
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load dataset
dataset = GASDataset(args.dataset)
graph = dataset[0]
# check cuda
if args.gpu >= 0 and th.cuda.is_available():
device = "cuda:{}".format(args.gpu)
else:
device = "cpu"
# binary classification
num_classes = dataset.num_classes
# retrieve labels of ground truth
labels = graph.edges["forward"].data["label"].to(device).long()
# Extract node features
e_feat = graph.edges["forward"].data["feat"].to(device)
u_feat = graph.nodes["u"].data["feat"].to(device)
v_feat = graph.nodes["v"].data["feat"].to(device)
# retrieve masks for train/validation/test
train_mask = graph.edges["forward"].data["train_mask"]
val_mask = graph.edges["forward"].data["val_mask"]
test_mask = graph.edges["forward"].data["test_mask"]
train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)
graph = graph.to(device)
# Step 2: Create model =================================================================== #
model = GAS(
e_in_dim=e_feat.shape[-1],
u_in_dim=u_feat.shape[-1],
v_in_dim=v_feat.shape[-1],
e_hid_dim=args.e_hid_dim,
u_hid_dim=args.u_hid_dim,
v_hid_dim=args.v_hid_dim,
out_dim=num_classes,
num_layers=args.num_layers,
dropout=args.dropout,
activation=F.relu,
)
model = model.to(device)
# Step 3: Create training components ===================================================== #
loss_fn = th.nn.CrossEntropyLoss()
optimizer = optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
# Step 4: training epochs =============================================================== #
for epoch in range(args.max_epoch):
# Training and validation using a full graph
model.train()
logits = model(graph, e_feat, u_feat, v_feat)
# compute loss
tr_loss = loss_fn(logits[train_idx], labels[train_idx])
tr_f1 = f1_score(
labels[train_idx].cpu(), logits[train_idx].argmax(dim=1).cpu()
)
tr_auc = roc_auc_score(
labels[train_idx].cpu(), logits[train_idx][:, 1].detach().cpu()
)
tr_pre, tr_re, _ = precision_recall_curve(
labels[train_idx].cpu(), logits[train_idx][:, 1].detach().cpu()
)
tr_rap = tr_re[tr_pre > args.precision].max()
# validation
valid_loss = loss_fn(logits[val_idx], labels[val_idx])
valid_f1 = f1_score(
labels[val_idx].cpu(), logits[val_idx].argmax(dim=1).cpu()
)
valid_auc = roc_auc_score(
labels[val_idx].cpu(), logits[val_idx][:, 1].detach().cpu()
)
valid_pre, valid_re, _ = precision_recall_curve(
labels[val_idx].cpu(), logits[val_idx][:, 1].detach().cpu()
)
valid_rap = valid_re[valid_pre > args.precision].max()
# backward
optimizer.zero_grad()
tr_loss.backward()
optimizer.step()
# Print out performance
print(
"In epoch {}, Train R@P: {:.4f} | Train F1: {:.4f} | Train AUC: {:.4f} | Train Loss: {:.4f}; "
"Valid R@P: {:.4f} | Valid F1: {:.4f} | Valid AUC: {:.4f} | Valid loss: {:.4f}".format(
epoch,
tr_rap,
tr_f1,
tr_auc,
tr_loss.item(),
valid_rap,
valid_f1,
valid_auc,
valid_loss.item(),
)
)
# Test after all epoch
model.eval()
# forward
logits = model(graph, e_feat, u_feat, v_feat)
# compute loss
test_loss = loss_fn(logits[test_idx], labels[test_idx])
test_f1 = f1_score(
labels[test_idx].cpu(), logits[test_idx].argmax(dim=1).cpu()
)
test_auc = roc_auc_score(
labels[test_idx].cpu(), logits[test_idx][:, 1].detach().cpu()
)
test_pre, test_re, _ = precision_recall_curve(
labels[test_idx].cpu(), logits[test_idx][:, 1].detach().cpu()
)
test_rap = test_re[test_pre > args.precision].max()
print(
"Test R@P: {:.4f} | Test F1: {:.4f} | Test AUC: {:.4f} | Test loss: {:.4f}".format(
test_rap, test_f1, test_auc, test_loss.item()
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GCN-based Anti-Spam Model")
parser.add_argument(
"--dataset", type=str, default="pol", help="'pol', or 'gos'"
)
parser.add_argument(
"--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU."
)
parser.add_argument(
"--e_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for edges",
)
parser.add_argument(
"--u_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for source nodes",
)
parser.add_argument(
"--v_hid_dim",
type=int,
default=128,
help="Hidden layer dimension for destination nodes",
)
parser.add_argument(
"--num_layers", type=int, default=2, help="Number of GCN layers"
)
parser.add_argument(
"--max_epoch",
type=int,
default=100,
help="The max number of epochs. Default: 100",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="Learning rate. Default: 1e-3"
)
parser.add_argument(
"--dropout", type=float, default=0.0, help="Dropout rate. Default: 0.0"
)
parser.add_argument(
"--weight_decay",
type=float,
default=5e-4,
help="Weight Decay. Default: 0.0005",
)
parser.add_argument(
"--precision",
type=float,
default=0.9,
help="The value p in recall@p precision. Default: 0.9",
)
args = parser.parse_args()
print(args)
main(args)