-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessing.py
601 lines (555 loc) · 22.3 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import gc
import time
from pathlib import Path
from typing import Union
import memory_profiler
import mpu
import pandas as pd
from diskcache import Cache
from keras_preprocessing.image import ImageDataGenerator
from lazyft import paths
from lazyft.data_loader import load_pair_data
from loguru import logger
from pandas import DataFrame, Series
import util
from data import load_pair_data_for_each_timeframe
from data_models import Mode, Profile
from split import (
create_decision_map,
create_decision_map_with_custom_timeframes,
split_timeframes,
split_timeframes2,
)
from writer import (
create_gaf_images,
fill_writer_queue,
fill_writer_queue_with_decisions,
write_images,
)
cache = Cache(paths.CACHE_DIR)
data_gen = ImageDataGenerator(rescale=1 / 255)
def preprocess(
profile: Profile,
mode: Mode,
custom_data: pd.DataFrame = None,
custom_timeframes: dict[str, pd.DataFrame] = None,
save_preprocessed_file: bool = True,
load_preprocessed_file: bool = True,
):
"""
It takes the dataframe of the pair
:param profile: The profile of the session
:param mode: Mode = TRAIN, TEST, or PREDICT
:param custom_data: A custom dataframe to use for preprocessing
:param custom_timeframes: A dictionary of custom timeframes to use for grouping the data
:param load_preprocessed_file: If true, load the preprocessed file from disk
:param save_preprocessed_file: If true, save the preprocessed file to disk
:return: a dataframe with the following columns:
"""
if mode == Mode.PREDICT and custom_data is None:
raise ValueError("custom_data must be specified for prediction mode")
df = custom_data
if df is None:
df = load_pair_data(
profile.pair,
profile.download_interval,
timerange=profile.get_timerange(mode),
)
df = df[["date", "close", "open"]]
# clean_df = clean_non_trading_times(df)
try:
if mode == Mode.PREDICT:
return preprocess_prediction(custom_timeframes, df, profile)
return preprocess_train(df, load_preprocessed_file, mode, profile, save_preprocessed_file)
except Exception as e:
raise
finally:
gc.collect()
def preprocess2(
profile: Profile,
mode: Mode,
custom_data: dict[str, pd.DataFrame] = None,
# custom_timeframes: list[pd.DataFrame] = None,
save_preprocessed_file: bool = True,
load_preprocessed_file: bool = True,
):
"""
It takes the dataframe of the pair
:param profile: The profile of the session
:param mode: Mode = TRAIN, TEST, or PREDICT
:param custom_data: A custom dataframe to use for preprocessing
:param custom_timeframes: A dictionary of custom timeframes to use for grouping the data
:param load_preprocessed_file: If true, load the preprocessed file from disk
:param save_preprocessed_file: If true, save the preprocessed file to disk
:return: a dataframe with the following columns:
"""
if mode == Mode.PREDICT and custom_data is None:
raise ValueError("custom_data must be specified for prediction mode")
dfs = custom_data
if dfs is None:
dfs = load_pair_data_for_each_timeframe(
profile.pair,
timerange=profile.get_timerange(mode),
timeframes=profile.timeframes,
)
for key, value in dfs.items():
dfs[key].loc[:, "date"] = pd.to_datetime(value["date"])
dfs[key] = value[["date", "close", "open"]]
# clean_df = clean_non_trading_times(df)
try:
if mode == Mode.PREDICT:
return preprocess_prediction2(dfs, profile)
return preprocess_train2(dfs, mode, profile, save_preprocessed_file)
except Exception as e:
raise
finally:
gc.collect()
def preprocess_train(df, load_preprocessed_file, mode, profile, save_preprocessed_file):
"""
Preprocessing for training and evaluation
:param df: the dataframe containing the data
:param load_preprocessed_file: If you've already preprocessed the data, you can load it from a file
:param mode: "train" or "test"
:param profile: the name of the profile you want to use
:param save_preprocessed_file: If True, the preprocessed data will be saved to a file
:return: A list of all the images that were written to disk.
"""
df["date"] = pd.to_datetime(df["date"])
decisions, image_dir = map_date_slices_to_decision(
df, profile, mode, save_preprocessed_file, load_preprocessed_file
)
write_images(fill_writer_queue_with_decisions(image_dir, decisions))
return [
*[d[0] for d in decisions["SHORT"]],
*[d[0] for d in decisions["LONG"]],
]
def preprocess_train2(
dfs: dict[str, pd.DataFrame],
mode: Mode,
profile: Profile,
load_preprocessed_file=False,
save_preprocessed_file=False,
):
"""
Preprocessing for training and evaluation
:param dfs: the dataframe containing the data
:param load_preprocessed_file: If you've already preprocessed the data, you can load it from a file
:param mode: "train" or "test"
:param profile: the name of the profile you want to use
:param save_preprocessed_file: If True, the preprocessed data will be saved to a file
:return: A list of all the images that were written to disk.
"""
# df["date"] = pd.to_datetime(df["date"])
decisions, image_dir = map_date_slices_to_decision2(
dfs, profile, mode, save_preprocessed_file, load_preprocessed_file
)
write_images(fill_writer_queue_with_decisions(image_dir, decisions))
return [
*[d[0] for d in decisions["SHORT"]],
*[d[0] for d in decisions["LONG"]],
]
def preprocess_prediction(
custom_timeframes: dict[str, pd.DataFrame], df: pd.DataFrame, profile: Profile
):
"""
Preprocessing for freqtrade strategies
:param custom_timeframes: a list of timeframes to use for prediction. If you want to use all the
timeframes in the profile, leave this as None
:param df: the dataframe of the data you want to predict on
:param profile: the profile object that contains all the parameters for the model
:return: The parent folder of the temporary folder and a list of the keys of the quad_series
dictionary.
"""
quad_series = split_timeframes(
df,
profile.window_size,
profile.timeframes,
util.get_dates_from_df(df, profile.max_tf),
download_interval=profile.download_interval,
custom_timeframes=custom_timeframes,
)
start_date = df.iloc[0]["date"]
end_date = df.iloc[-1]["date"]
tmp_folder = Path(
"/tmp",
profile.formatted_pair,
f"{int(start_date.timestamp())}-{int(end_date.timestamp())}",
"_".join(profile.timeframes),
)
tmp_folder.mkdir(exist_ok=True, parents=True)
# write_images(fill_writer_queue(quad_series, tmp_folder))
# return tmp_folder.parent, list(quad_series.keys())
return create_gaf_images(quad_series)
def preprocess_prediction2(dfs: dict[str, pd.DataFrame], profile: Profile):
"""
Preprocessing for freqtrade strategies
"""
main_tf_data = dfs[profile.max_tf]["date"]
quad_series = split_timeframes2(
dfs,
profile.window_size,
util.get_dates_from_df2(main_tf_data),
profile.tail_window,
)
start_date = main_tf_data.iloc[0]["date"]
end_date = main_tf_data.iloc[-1]["date"]
tmp_folder = Path(
"/tmp",
profile.formatted_pair,
f"{int(start_date.timestamp())}-{int(end_date.timestamp())}",
"_".join(profile.timeframes),
)
tmp_folder.mkdir(exist_ok=True, parents=True)
# write_images(fill_writer_queue(quad_series, tmp_folder))
# return tmp_folder.parent, list(quad_series.keys())
return create_gaf_images(quad_series)
def map_date_slices_to_decision(df, profile, mode, save_preprocessed_file, load_preprocessed_file):
"""
> It creates a decision map for the given dataframe and mode, and returns the decision map and the
image directory
:param df: the dataframe containing the data
:param profile: The profile object that contains all the parameters for the model
:param mode: This is the mode of the data. It can be either train, test or validation
:param save_preprocessed_file: If True, the preprocessed data will be saved to a pickle file
:param load_preprocessed_file: If True, the preprocessed file will be loaded from the image
directory
:return: A decision map and the image directory.
"""
image_dir = profile.get_images_path(mode)
list_dates = util.get_dates_from_df(df, profile.max_tf)
decision_map = None
pickle_path = Path(image_dir, f"preprocessed_{mode.value}.pickle")
if load_preprocessed_file:
if not pickle_path.exists():
logger.info(f"Preprocessed file not found at {pickle_path}, preprocessing data")
else:
logger.info(f"Loading preprocessed file from {pickle_path}")
decision_map = mpu.io.read(str(pickle_path))
if decision_map is None:
logger.info(f"Creating decision map for {mode.value} mode...")
decision_map = create_decision_map_with_custom_timeframes(
df,
list_dates,
profile.timeframes,
profile.window_size,
profile.download_interval,
)
if save_preprocessed_file:
logger.info(f"Saving preprocessed file to {pickle_path}")
mpu.io.write(str(pickle_path), decision_map)
util.print_preprocess_info(decision_map, len(list_dates))
logger.info(f"Creating images for {mode.value} mode......")
return decision_map, image_dir
def map_date_slices_to_decision2(
dfs: dict[str, pd.DataFrame],
profile,
mode,
save_preprocessed_file=False,
load_preprocessed_file=False,
):
"""
> It creates a decision map for the given dataframe and mode, and returns the decision map and the
image directory
:param df: the dataframe containing the data
:param profile: The profile object that contains all the parameters for the model
:param mode: This is the mode of the data. It can be either train, test or validation
:param save_preprocessed_file: If True, the preprocessed data will be saved to a pickle file
:param load_preprocessed_file: If True, the preprocessed file will be loaded from the image
directory
:return: A decision map and the image directory.
"""
image_dir = profile.get_images_path(mode)
list_dates = util.get_dates_from_df2(dfs[profile.max_tf])
decision_map = None
pickle_path = Path(image_dir, f"preprocessed_{mode.value}.pickle")
if load_preprocessed_file:
if not pickle_path.exists():
logger.info(f"Preprocessed file not found at {pickle_path}, preprocessing data")
else:
logger.info(f"Loading preprocessed file from {pickle_path}")
decision_map = mpu.io.read(str(pickle_path))
if decision_map is None:
logger.info(f"Creating decision map for {mode.value} mode...")
decision_map = create_decision_map_with_custom_timeframes(
dfs, profile.max_tf, list_dates, profile.window_size, profile.tail_window
)
if save_preprocessed_file:
logger.info(f"Saving preprocessed file to {pickle_path}")
mpu.io.write(str(pickle_path), decision_map)
util.print_preprocess_info(decision_map, len(list_dates))
logger.info(f"Creating images for {mode.value} mode......")
return decision_map, image_dir
# @util.timeit
# def quick_gaf(df: pd.DataFrame, profile: Profile):
# """
# The function takes a dataframe of OHLCV data and returns a list of GAFs and a list of answers
#
# :param df: The dataframe to be processed
# :param profile: The profile to use for the data
# :return: A list of GAFs and a list of answers.
# """
# # t1 = time.perf_counter()
#
# quad_series = split_timeframes(df, timeframes=profile.timeframes)
# to_plot = [create_gaf(x)["gadf"] for x in quad_series]
# image = get_image_from_gaf(to_plot)
# # print('quick_gaf() -> Elapsed time:', timedelta(seconds=time.perf_counter() - t1))
# image = image.resize((profile.image_size, profile.image_size))
#
# as_numpy = img_to_array(image)
# as_numpy = as_numpy.reshape((1, profile.image_size, profile.image_size, 3))
# return data_gen.standardize(as_numpy)
# def data_to_image_preprocess_new(
# timerange='20180101-20211231',
# data: pd.DataFrame = None,
# pair: str = 'BTC/USDT',
# download_interval: str = '1h',
# high_interval: str = '1d',
# image_save_path: Path = TRAIN_IMAGES_PATH,
# ):
# """
# This function takes a timerange and a dataframe and creates images for each timeframe.
# If no dataframe is passed, it will load the dataframe from the lazyft data.
#
# :param timerange: The time range to use for the data, defaults to 20180101-20211231 (optional)
# :param data: The dataframe to be converted to an image
# :param pair: The coin to be used for the data, defaults to 'BTC/USDT' (optional)
# :param download_interval: The interval to be used for downloading data, defaults to '1h' (optional)
# :param high_interval: The maximum timeframe to use. This will be used to create the labels.
# :param image_save_path: The path to save the images, defaults to IMAGES_PATH (optional)
# :type data: pd.DataFrame
# :return: A dataframe with the following columns:
# date, open, close, high, low, volume
# """
# dl_tf_mins = timeframe_to_minutes(download_interval)
# high_tf_mins = timeframe_to_minutes(high_interval)
#
# assert dl_tf_mins < high_tf_mins, 'interval must be less than high_interval'
#
# data_gen = quadrant_data_generator(pair, ['1h', '4h', '8h'], timerange)
# # clean_df = clean_non_trading_times(df)
# return set_gaf_data_new(data_gen, image_save_path=image_save_path, high_interval=high_interval)
#
#
# def set_gaf_data_new(
# df: pd.DataFrame,
# window: int = 20,
# timeframes: list = None,
# image_save_path=TRAIN_IMAGES_PATH,
# high_interval='1d',
# ):
# """
# It takes a dataframe of historical data and a window size,
# and generates a set of images for each trading decision (long or short) that occurred during that
# window
#
# :param df: The dataframe that contains the data
# :param window: The number of days to look back when calculating the GAF, defaults to 20
# :param timeframes: list of timeframes to use for the GAF
# :param image_save_path: The path to save the images, defaults to IMAGES_PATH (optional)
# :param high_interval: The maximum timeframe to use. This will be used to create the labels.
# """
# if timeframes is None:
# timeframes = ['1h', '4h', '8h', '1d']
#
# dates = df['date'].dt.date
# dates = dates.drop_duplicates()
# list_dates = dates.apply(str).tolist()
#
# index = window
# decision_map = defaultdict(list)
# df_grouped_1d = df.groupby(pd.Grouper(key='date', freq='1d')).mean().reset_index()
# # create new Series from df, with the 'SHORT' being set if CLOSE-OPEN < 0 and 'LONG' otherwise
# df_grouped_1d['decision'] = df_grouped_1d['close'].shift(-1) - df_grouped_1d['open'].shift(-1)
# decisions = df_grouped_1d['decision'] = (
# df_grouped_1d['decision'].apply(lambda x: 'SHORT' if x < 0 else 'LONG').to_list()
# )
# # del df_grouped_1d
# for index, date in enumerate(list_dates[window:], start=window):
# if index >= len(list_dates):
# break
#
# # select appropriate timeframe
# data_slice = df.loc[
# (df['date'] > list_dates[index - window]) & (df['date'] < list_dates[index])
# ]
# # print('len of data slice: ', len(data_slice), 'head: ', data_slice.head())
# gafs = []
#
# # group dataslices by timeframe
# for freq in timeframes:
# group_dt = data_slice.groupby(pd.Grouper(key='date', freq=freq)).mean().reset_index()
# group_dt = group_dt.dropna()
# gafs.append(group_dt['close'].tail(20))
# future_value = df.loc[df['date'] == date]['close'].iloc[-1]
# future_open = df.loc[df['date'] == date]['open'].iloc[-1]
#
# current_value = data_slice['close'].iloc[-1]
# decision = trading_action(future_value, current_value)
# new_decision = decisions[index - 1]
# try:
# assert decision == new_decision
# except:
# print(
# 'list_dates[index]: ',
# list_dates[index],
# 'original decision: ',
# decision,
# 'New decision: ',
# new_decision,
# 'index: ',
# index,
# 'future_close: ',
# future_value,
# 'future_open: ',
# future_open,
# 'current_value: ',
# current_value,
# # sep=' | ',
# )
# raise
# decision_map[decision].append([list_dates[index - 1], gafs])
# index += 1
# exit()
# print('Generating images...')
# generate_gaf(decision_map, image_save_path)
# dt_points = dates.shape[0]
# total_shorts = len(decision_map['SHORT'])
# total_longs = len(decision_map['LONG'])
# images_created = total_shorts + total_longs
# print(
# "========PREPROCESS REPORT========:\nTotal Data Points: {0}\nTotal Images Created: {1}"
# "\nTotal LONG positions: {2}\nTotal SHORT positions: {3}".format(
# dt_points, images_created, total_shorts, total_longs
# )
# )
# def generate_gaf_pooled(images_data: dict[str, list], image_save_path=TRAIN_IMAGES_PATH):
# """
# A multithreaded version of generate_gaf
# """
#
# # in_memory_mode = image_save_path != TRAIN_IMAGES_PATH
# pngs = [p.name for p in Path(image_save_path).glob(f"*/*.png")]
#
# def func(data, decision):
# save_name = str(Path(data[0].replace('-', '_')).with_suffix('.png'))
# if save_name in pngs:
# return
# t1 = time.time()
# first = data[1]
# to_plot = [create_gaf(x)['gadf'] for x in first]
# create_images(
# x_plots=to_plot,
# image_name=save_name.replace('.png', ''),
# destination=decision,
# folder=image_save_path,
# )
# print('generate_gaf_pooled() -> func() Elapsed time:', timedelta(seconds=time.time() - t1))
#
# # images = []
# # decisions = []
# with ThreadPoolExecutor() as executor:
# for decision, data in images_data.items():
# futures = [executor.submit(func, data_point, decision) for data_point in data]
# for future in as_completed(futures):
# future.result()
# # images.append(image)
# # decisions.append(1 if decision == 'LONG' else 0)
# #
# # if in_memory_mode:
# # return images, decisions
def create_dataflow_dataframe(path: Path, list_dates: list) -> Union[DataFrame, Series]:
"""
:param path: As String
:param list_dates:
:return: List of overlapping index DataFrames
"""
all_images = path.glob("*/*.png")
df_images = []
labels = []
for i in sorted(all_images, key=lambda x: x.name):
if i.stem not in list_dates:
continue
sub_folder = i.parent.name
labels.append(sub_folder)
df_images.append(str(i.resolve()))
df = pd.DataFrame(
{
"Images": df_images,
"Labels": labels,
"Dates": sorted(list_dates),
}
)
df["Dates"] = pd.to_datetime(df["Dates"])
# dataframes.append(data_slice)
# data = pd.concat(dataframes)
df.sort_values(by="Dates", inplace=True)
# del df["Dates"]
return df
# def get_gaf_and_answers(profile: Profile, mode=Mode.TRAIN):
# """
# It loads the data, groups it by 480 rows, and then creates a GAF image for each group
#
# :param profile: The Profile object that contains the parameters for the GAF
# :param mode: The mode of the data
# :return: The answers and the images
# """
# data = load_pair_data(
# profile.pair, profile.download_interval, timerange=profile.get_timerange(mode)
# )
# # validation_data = load_pair_data(profile.pair, '1h', timerange='20220101-')
# # gb = data.groupby(np.arange(len(data)) // (profile.max_tf_as_hours * 20))
# gb = util.roll(data, profile.max_tf_as_hours * 20)
# images = np.zeros(shape=(len(gb), profile.image_size, profile.image_size, 3))
# answers = np.zeros(shape=(len(gb), 1), dtype=int)
# with alive_bar(
# len(data) // (profile.max_tf_as_hours * 20),
# title="Creating Training Data...",
# bar="smooth",
# ) as bar:
# for i, d in gb:
# image = quick_gaf(d, profile)
# decision = get_answer(d, data)
# images[i] = image
# answers[i] = 1 if decision == "SHORT" else 0
# bar()
#
# return answers, images
if __name__ == "__main__":
tmp = Path("/tmp/test_btc_2022")
tr = "20220314-"
# threaded = False
# t1 = time.time()
# data_to_image_preprocess(timerange=tr)
# print('Non MultiThreaded Elapsed time:', timedelta(seconds=time.time() - t1))
threaded = False
t2 = time.time()
profile = Profile(pair="BTC/USDT", train_timerange=tr, timeframes=["1h", "4h", "12h", "1d"])
# profile.ensure_directories_exist()
data = load_pair_data(profile.pair, "1h", timerange=tr)
# data_to_image_preprocess(profile)
# print('MultiThreaded Elapsed time:', timedelta(seconds=time.time() - t2))
# preprocess = data_to_image_preprocess(
# # timerange='20170101-20211231',
# data=load_pair_data('BTC/USDT', '30m', timerange='20220223-'),
# image_save_path=tmp,
# )
# x = preprocess[0]
# y = preprocess[1]
# images = quick_gaf(load_pair_data('BTC/USDT', '30m', timerange='20220223-'))
# images = transform(images)
# train_dataset = datasets.ImageFolder(
# root=str(tmp),
# transform=transforms.Compose(
# [
# transforms.Resize(255),
# transforms.ToTensor()
# # transforms.Scale(255),
# ]
# ),
# )
# generator = ImageDataGenerator(rescale=1 / 255)
# data = generator.flow(x=images, batch_size=1)
# print(torch_x)
# print(train_dataset[5][0])
# generate_gaf(preprocess)