forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
45 lines (33 loc) · 1.07 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import sys
import time
import numpy as np
def ivecs_read(fname):
a = np.fromfile(fname, dtype='int32')
d = a[0]
return a.reshape(-1, d + 1)[:, 1:].copy()
def fvecs_read(fname):
return ivecs_read(fname).view('float32')
def load_sift1M():
print("Loading sift1M...", end='', file=sys.stderr)
xt = fvecs_read("sift1M/sift_learn.fvecs")
xb = fvecs_read("sift1M/sift_base.fvecs")
xq = fvecs_read("sift1M/sift_query.fvecs")
gt = ivecs_read("sift1M/sift_groundtruth.ivecs")
print("done", file=sys.stderr)
return xb, xq, xt, gt
def evaluate(index, xq, gt, k):
nq = xq.shape[0]
t0 = time.time()
D, I = index.search(xq, k) # noqa: E741
t1 = time.time()
recalls = {}
i = 1
while i <= k:
recalls[i] = (I[:, :i] == gt[:, :1]).sum() / float(nq)
i *= 10
return (t1 - t0) * 1000.0 / nq, recalls