forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_vector_ops.py
85 lines (62 loc) · 2.11 KB
/
bench_vector_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#! /usr/bin/env python2
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import numpy as np
import faiss
import time
swig_ptr = faiss.swig_ptr
if False:
a = np.arange(10, 14).astype('float32')
b = np.arange(20, 24).astype('float32')
faiss.fvec_inner_product (swig_ptr(a), swig_ptr(b), 4)
1/0
xd = 100
yd = 1000000
np.random.seed(1234)
faiss.omp_set_num_threads(1)
print('xd=%d yd=%d' % (xd, yd))
print('Running inner products test..')
for d in 3, 4, 12, 36, 64:
x = faiss.rand(xd * d).reshape(xd, d)
y = faiss.rand(yd * d).reshape(yd, d)
distances = np.empty((xd, yd), dtype='float32')
t0 = time.time()
for i in range(xd):
faiss.fvec_inner_products_ny(swig_ptr(distances[i]),
swig_ptr(x[i]),
swig_ptr(y),
d, yd)
t1 = time.time()
# sparse verification
ntry = 100
num, denom = 0, 0
for t in range(ntry):
xi = np.random.randint(xd)
yi = np.random.randint(yd)
num += abs(distances[xi, yi] - np.dot(x[xi], y[yi]))
denom += abs(distances[xi, yi])
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))
print('Running L2sqr test..')
for d in 3, 4, 12, 36, 64:
x = faiss.rand(xd * d).reshape(xd, d)
y = faiss.rand(yd * d).reshape(yd, d)
distances = np.empty((xd, yd), dtype='float32')
t0 = time.time()
for i in range(xd):
faiss.fvec_L2sqr_ny(swig_ptr(distances[i]),
swig_ptr(x[i]),
swig_ptr(y),
d, yd)
t1 = time.time()
# sparse verification
ntry = 100
num, denom = 0, 0
for t in range(ntry):
xi = np.random.randint(xd)
yi = np.random.randint(yd)
num += abs(distances[xi, yi] - np.sum((x[xi] - y[yi]) ** 2))
denom += abs(distances[xi, yi])
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))