forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_for_interrupt.py
155 lines (121 loc) · 4.04 KB
/
bench_for_interrupt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#! /usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import numpy as np
import faiss
import time
import os
import argparse
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('dataset options')
aa('--dim', type=int, default=64)
aa('--nb', type=int, default=int(1e6))
aa('--subset_len', type=int, default=int(1e5))
aa('--key', default='IVF1000,Flat')
aa('--nprobe', type=int, default=640)
aa('--no_intcallback', default=False, action='store_true')
aa('--twostage', default=False, action='store_true')
aa('--nt', type=int, default=-1)
args = parser.parse_args()
print("args:", args)
d = args.dim # dimension
nb = args.nb # database size
nq = 1000 # nb of queries
nt = 100000
subset_len = args.subset_len
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xq = np.random.random((nq, d)).astype('float32')
xt = np.random.random((nt, d)).astype('float32')
k = 100
if args.no_intcallback:
faiss.InterruptCallback.clear_instance()
if args.nt != -1:
faiss.omp_set_num_threads(args.nt)
nprobe = args.nprobe
key = args.key
#key = 'IVF1000,Flat'
# key = 'IVF1000,PQ64'
# key = 'IVF100_HNSW32,PQ64'
# faiss.omp_set_num_threads(1)
pf = 'dim%d_' % d
if d == 64:
pf = ''
basename = '/tmp/base%s%s.index' % (pf, key)
if os.path.exists(basename):
print('load', basename)
index_1 = faiss.read_index(basename)
else:
print('train + write', basename)
index_1 = faiss.index_factory(d, key)
index_1.train(xt)
faiss.write_index(index_1, basename)
print('add')
index_1.add(xb)
print('set nprobe=', nprobe)
faiss.ParameterSpace().set_index_parameter(index_1, 'nprobe', nprobe)
class ResultHeap:
""" Combine query results from a sliced dataset """
def __init__(self, nq, k):
" nq: number of query vectors, k: number of results per query "
self.I = np.zeros((nq, k), dtype='int64')
self.D = np.zeros((nq, k), dtype='float32')
self.nq, self.k = nq, k
heaps = faiss.float_maxheap_array_t()
heaps.k = k
heaps.nh = nq
heaps.val = faiss.swig_ptr(self.D)
heaps.ids = faiss.swig_ptr(self.I)
heaps.heapify()
self.heaps = heaps
def add_batch_result(self, D, I, i0):
assert D.shape == (self.nq, self.k)
assert I.shape == (self.nq, self.k)
I += i0
self.heaps.addn_with_ids(
self.k, faiss.swig_ptr(D),
faiss.swig_ptr(I), self.k)
def finalize(self):
self.heaps.reorder()
stats = faiss.cvar.indexIVF_stats
stats.reset()
print('index size', index_1.ntotal,
'imbalance', index_1.invlists.imbalance_factor())
start = time.time()
Dref, Iref = index_1.search(xq, k)
print('time of searching: %.3f s = %.3f + %.3f ms' % (
time.time() - start, stats.quantization_time, stats.search_time))
indexes = {}
if args.twostage:
for i in range(0, nb, subset_len):
index = faiss.read_index(basename)
faiss.ParameterSpace().set_index_parameter(index, 'nprobe', nprobe)
print("add %d:%d" %(i, i+subset_len))
index.add(xb[i:i + subset_len])
indexes[i] = index
rh = ResultHeap(nq, k)
sum_time = tq = ts = 0
for i in range(0, nb, subset_len):
if not args.twostage:
index = faiss.read_index(basename)
faiss.ParameterSpace().set_index_parameter(index, 'nprobe', nprobe)
print("add %d:%d" %(i, i+subset_len))
index.add(xb[i:i + subset_len])
else:
index = indexes[i]
stats.reset()
start = time.time()
Di, Ii = index.search(xq, k)
sum_time = sum_time + time.time() - start
tq += stats.quantization_time
ts += stats.search_time
rh.add_batch_result(Di, Ii, i)
print('time of searching separately: %.3f s = %.3f + %.3f ms' %
(sum_time, tq, ts))
rh.finalize()
print('diffs: %d / %d' % ((Iref != rh.I).sum(), Iref.size))