-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray_arithmetic.py
203 lines (148 loc) · 5.45 KB
/
array_arithmetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gc
import numexpr as ne
import numpy as np
import time
print("Configuration")
# Python float is 64 bit / 8 byte
ARRAY_SIZE = 1000 * 1000 * 10
size_of_array = ARRAY_SIZE * 8 / (1024 * 1024)
print("- Size of data array: {} MiB".format(size_of_array))
N = 10
print("- Number of iterations to average: {}".format(N))
def SETUP():
array1 = np.ones(ARRAY_SIZE)
array2 = np.ones(ARRAY_SIZE)
buffer_array = np.empty(ARRAY_SIZE)
return array1, array2, buffer_array
def size_of(array: np.ndarray) -> float:
"""
Calculates the size in memory of a Numpy array
in MiB.
"""
element_dtype = array.dtype.type
element_size = 0
if "32" in str(element_dtype):
element_size = 4 # byte
elif "64" in str(element_dtype):
element_size = 8 # byte
return float( np.prod(array.shape) * element_size / (1024 * 1024) )
if __name__=="__main__":
# gc.disable()
print("{:45}{:<15}{:<15}".format("Case description", "Total time", "Per-iteration time"))
array1, array2, buffer_array = SETUP()
index_map = np.random.randint(0, ARRAY_SIZE - 1, size=ARRAY_SIZE)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1[index_map] * array2[index_map] + array1[index_map] * array2[index_map]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Non-contiguous access, vectorization", elapsed_time, average))
print( size_of(array1) + size_of(array2) + size_of(buffer_array) + size_of(index_map) )
array1, array2, buffer_array = SETUP()
index_map = np.arange(0, ARRAY_SIZE)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1[index_map] * array2[index_map] + array1[index_map] * array2[index_map]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Contiguous access, vectorization", elapsed_time, average))
array1, array2, buffer_array = SETUP()
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array[:] = array1 * array2 + array1 * array2
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Pure Numpy arithmetic with [:] onthe LHS", elapsed_time, average))
array1, array2, buffer_array = SETUP()
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1 * array2 + array1 * array2
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Pure Numpy arithmetic, no colon", elapsed_time, average))
array1, array2, buffer_array = SETUP()
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = ne.evaluate("array1 * array2 + array1 * array2")
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("numexpr", elapsed_time, average))
# Iterating over difference indeces...
print("Iterating over a difference index in a 5D array...")
print(" array[0,1,2,3,4]")
DIM = 40
shape = ( DIM, DIM, DIM, DIM, DIM )
array1 = np.ones(shape)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[:,:,:,:,i] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("4", elapsed_time, average))
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[:,:,:,i,:] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("3", elapsed_time, average))
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[:,:,i,:,:] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("2", elapsed_time, average))
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[:,i,:,:,:] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("1", elapsed_time, average))
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[i,:,:,:,:] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("0", elapsed_time, average))
# Scaling when iterating over the middle index
BASE_DIM = 10
N = 10
for i in range(10):
DIM = 10 ** i
print(DIM)
shape = ( 25, 72, DIM, 3, 3 )
array1 = np.ones(shape)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(DIM):
a = array1[:,:,i,:,:] + 1
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
array_size = int(np.prod(shape) * 8 / (1000 * 1000))
print("{:8d} MB {:<15.6f}{:<15.6f}".format(array_size, elapsed_time, average))