-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray_access_patterns.py
98 lines (71 loc) · 2.72 KB
/
array_access_patterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gc
import numpy as np
import time
# contiguous_array[i-1]
# contiguous_array[i]
# contiguous_array[i+1]
# new_array1 = np.ones(np.shape(contiguous_array))
print("Configuration")
# Python float is 64 bit / 8 byte
ARRAY_SIZE = 1000 * 1000 * 1
print("- Size of data array: {} MB".format(ARRAY_SIZE * 8 / (1000 * 1000)))
N = 10
print("- Number of iterations to average: {}".format(N))
def SETUP():
array1 = np.ones(ARRAY_SIZE)
array2 = np.ones(ARRAY_SIZE)
buffer_array = np.empty(ARRAY_SIZE)
return array1, array2, buffer_array
if __name__=="__main__":
# gc.disable()
print("{:45}{:<15}{:<15}".format("Case description", "Total time", "Per-iteration time"))
array1, array2, buffer_array = SETUP()
index_map = np.random.randint(0, ARRAY_SIZE - 1, size=ARRAY_SIZE)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in index_map:
buffer_array[i] = array1[i] + array2[i]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Non-contiguous access, no vectorization", elapsed_time, average))
array1, array2, buffer_array = SETUP()
elapsed_time = 0.0
for _ in range(N):
start = time.time()
for i in range(ARRAY_SIZE):
buffer_array[i] = array1[i] + array2[i]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Contiguous access, no vectorization", elapsed_time, average))
array1, array2, buffer_array = SETUP()
index_map = np.random.randint(0, ARRAY_SIZE - 1, size=ARRAY_SIZE)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1[index_map] + array2[index_map]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Non-contiguous access, vectorization", elapsed_time, average))
array1, array2, buffer_array = SETUP()
index_map = np.arange(0, ARRAY_SIZE)
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1[index_map] + array2[index_map]
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Contiguous access, vectorization", elapsed_time, average))
array1, array2, buffer_array = SETUP()
elapsed_time = 0.0
for _ in range(N):
start = time.time()
buffer_array = array1 + array2
end = time.time()
elapsed_time += end - start
average = elapsed_time / N
print("{:45}{:<15.6f}{:<15.6f}".format("Numpy arithmetic", elapsed_time, average))