-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbarra_factor_day.py
347 lines (263 loc) · 13.5 KB
/
barra_factor_day.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import os
from barra_factor import *
from datetime import datetime
from WindPy import w
import statsmodels.api as sm
import ts_api_demo as ts
import pymysql
from WindPy import w
w.start()
from GtjaAlphas import *
def standardize_cap_day(factor, cap):
cap = cap.ix[factor.index].fillna(0)
return (factor - np.average(factor, weights=cap)) / factor.std()
def standardize_day_factor(factor):
return (factor - factor.mean()) / factor.std()
def get_fundmental_day(date):
return ts.get_barra_factor(date, date)
def create_daily_barra_factor(fundmental, price_data, benchmark_return, resid_return, date):
#load the basic data of price and volume
total_shares = price_data['total_shares'].ix[date][fundmental.index]
volume = price_data['volume'].ix[:date][fundmental.index]
free_float_shares = price_data['free_float_shares'].ix[:date][fundmental.index]
adjclose = price_data['adjclose'].ix[:date][fundmental.index]
cap = (price_data['total_shares'] * price_data['close']).ix[date][fundmental.index]
resid_ret = resid_return.ix[:date].copy()
for stk in fundmental.index:
if stk not in resid_ret.columns:
resid_ret[stk] = np.nan
fundmental[u'净资产'] = total_shares * fundmental[u'每股净资产']
fundmental[u'长期负债'] = total_shares * fundmental[u'每股长期负债']
fundmental[u'总负债'] = total_shares * fundmental[u'每股负债']
pn_data = pd.DataFrame()
pn_data['LNCAP'] = np.log(fundmental[u'总市值'])
pn_data['ETOP'] = fundmental['1/PE']
pn_data['CETOP'] = (fundmental[u'每股现金净流量']/
price_data['close'].ix[date][fundmental.index])
pn_data['SGRO5'] = fundmental['PSG5']
pn_data['SGRO3'] = fundmental['PSG3']
pn_data['EGRO5'] = fundmental['NPG5']
pn_data['EGRO3'] = fundmental['NPG3']
pn_data['BTOP'] = fundmental['1/PB']
pn_data['MLEV'] = (fundmental[u'总市值'] +
fundmental[u'长期负债']) / fundmental[u'总市值']
pn_data['DTOA'] = fundmental[u'总负债'] / fundmental[u'总资产']
pn_data['BLEV'] = (fundmental[u'净资产'] +
fundmental[u'长期负债']) / fundmental[u'净资产']
# NLSIZE
standardize_cap = standardize_day_factor(mad_method(pn_data['LNCAP']))
cap_cube = standardize_cap ** 3
count = standardize_cap.count()
b = (count * (standardize_cap * cap_cube).sum() - standardize_cap.sum() *
cap_cube.sum()) / (count * (standardize_cap ** 2).sum() - (standardize_cap.sum())**2)
pn_data['NLSIZE'] = cap_cube - standardize_cap.multiply(b)
pn_data['STOM'] = np.log((volume / free_float_shares)[-21:].rolling(21).sum()).replace([-np.inf, np.inf], 0).iloc[-1]
pn_data['STOQ'] = np.log(1 / 3.0 * (volume / free_float_shares)[-63:].rolling(63).sum()).replace([-np.inf, np.inf], 0).iloc[-1]
pn_data['STOA'] = np.log(1 / 12.0 * (volume / free_float_shares)[-252:].rolling(252).sum()).replace([-np.inf, np.inf], 0).iloc[-1]
#beta
beta = pd.Series(0.0, index=resid_ret.columns)
resid_returns = pd.Series(0.0, index=resid_ret.columns)
close_limit = price_data['adjclose'].ix[:date][-253:]
stock_returns = close_limit.pct_change()[1:]
Lambda_63 = np.power(0.5, 1 / 63.0)
for stock in beta.index:
returns_stock = stock_returns[stock].copy()
volume_t = price_data['volume'].ix[:date][stock].ix[returns_stock.index]
#returns_stock[volume_t == 0] = np.nan
returns_stock = returns_stock.dropna()
N = returns_stock.shape[0]
if N < 126:
beta[stock] = np.nan
resid_returns[stock] = np.nan
continue
weight = pd.Series([Lambda_63 ** (N -1 -i) for i in range(N)], index=returns_stock.index)
returns_stock_weight = returns_stock.multiply(weight)
wdqa_pct = benchmark_return.ix[returns_stock.index].copy()
wdqa_pct_weight = wdqa_pct.multiply(weight)
wdqa_pct_weight = sm.add_constant(wdqa_pct_weight)
wdqa_pct_weight.columns = ['const', 'beta']
model_res = sm.OLS(returns_stock_weight, wdqa_pct_weight).fit()
beta[stock] = model_res.params.beta
resid_returns[stock] = model_res.params.const
pn_data['BETA'] = beta[fundmental.index]
for index in resid_returns.index:
if index not in resid_ret.columns:
resid_ret[index] = np.nan
resid_ret.ix[date] = resid_returns
resid_ret.index = pd.DatetimeIndex(resid_ret.index)
resid_ret = resid_ret.sort_index()
resid_ret.to_hdf('E:\multi_factor\\basic_factor\\resid_return.h5', 'table')
# Volatility
Lambda_42 = np.power(0.5, 1 / 42.0)
weight_42 = np.array([Lambda_42 ** (252 - i) for i in range(252)])
excess_return = (stock_returns[fundmental.index].T - benchmark_return.ix[stock_returns.index]).T
excess_return_square = (excess_return - excess_return.mean(axis=0)) ** 2
dastd = np.sqrt(np.average(excess_return_square, weights=weight_42, axis=0))
pn_data['DASTD'] = dastd
def max_cumulative_returns(x):
returns_array=np.array([x[-1] / x[-21 * T] for T in range(1, 13)])
return returns_array.max(axis=0)
def min_cumulative_returns(x):
returns_array=np.array([x[-1] / x[-21 * T] for T in range(1, 13)])
return returns_array.min(axis=0)
cmra = max_cumulative_returns(close_limit[fundmental.index].values) / min_cumulative_returns(close_limit[fundmental.index].values)\
pn_data['CMRA'] = cmra
Lambda_60=np.power(0.5, 1 / 63.0)
weight_60=np.array([Lambda_60 ** (251 - i) for i in range(252)])
resid = resid_ret.ix[-253:]
hsigma = resid.rolling(252).apply(
lambda x: np.sqrt(np.average((x - x.mean(axis=0))** 2, weights=weight_60, axis=0))).iloc[-1]
pn_data['HSIGMA'] = hsigma.ix[fundmental.index]
# Momentum
Lambda_126=np.power(0.5, 1.0 / 126.0)
weight_126=np.array([Lambda_126 ** (503 - i) for i in range(504)])
weight_252 = np.array([Lambda_126 ** (251 - i) for i in range(252)])
momentum_504 = pd.Series(np.average(np.log(adjclose[-505 - 21:].pct_change()[1:-21] + 1), weights=weight_126,axis=0), index=fundmental.index)
momentum_252 = pd.Series(np.average(np.log(adjclose[-253 - 21:].pct_change()[1:-21] + 1), weights=weight_252,axis=0), index=fundmental.index)
momentum = momentum_504.fillna(value=momentum_252)
pn_data['RSTR'] = momentum
industry_data = w.wsd(list(pn_data.index), "industry_citic", date, date, "industryType=1")
if industry_data.ErrorCode != 0:
industry_data = w.wss(list(pn_data.index), "industry_citic","tradeDate=%s;industryType=1" % date)
industry_stock = pd.Series(industry_data.Data[0], index=industry_data.Codes)
pn_data[u'行业'] = industry_stock
pn_data_fill = pn_data.groupby(u'行业').apply(lambda x: x.fillna(x.quantile()))
pn_data_fill.index = pn_data_fill.index.get_level_values(u'代码')
del pn_data_fill[u'行业']
pn_data_fill = pn_data_fill.apply(lambda x: standardize_cap_day(mad_method(x), cap))
pn_data_fill[u'行业'] = pn_data[u'行业']
pn_data = pn_data_fill.copy()
barra_factor=pd.DataFrame()
barra_factor['Beta']=pn_data['BETA']
barra_factor['Momentum']=pn_data['RSTR']
barra_factor['Size']=pn_data['LNCAP']
barra_factor['Earning Yield']=0.21 * \
pn_data['CETOP'] + 0.11 * pn_data['ETOP']
barra_factor['Growth']=0.25 * pn_data['EGRO3'] + 0.25 * \
pn_data['EGRO5'] + 0.25 * pn_data['SGRO5'] + 0.25 * pn_data['SGRO3']
barra_factor['Leverge']=0.38 * pn_data['MLEV'] + \
0.35 * pn_data['DTOA'] + 0.27 * pn_data['BLEV']
barra_factor['NLSIZE']=pn_data['NLSIZE']
barra_factor['Value']=pn_data['BTOP']
barra_factor['Liquidity']=0.35 * pn_data['STOM'] + \
0.35 * pn_data['STOQ'] + 0.3 * pn_data['STOA']
barra_factor['Volatility']=0.74 * pn_data['DASTD'] + \
0.16 * pn_data['CMRA'] + 0.1 * pn_data['HSIGMA']
vol = barra_factor['Volatility']
size = barra_factor['Size']
beta = barra_factor['Beta']
beta_size = pd.concat([beta, size], axis=1)
model = sm.OLS(vol, beta_size).fit()
vol_resid = model.resid
barra_factor['Volatility'] = vol_resid
barra_factor = barra_factor.apply(lambda x: standardize_cap_day(x, cap))
#pn_data[u'行业'] = map(lambda x: x[2:], pn_data[u'行业'])
industry_set = list(set(pn_data[u'行业']))
for industry in industry_set:
temp = pd.Series(0.0, barra_factor.index)
temp[pn_data[u'行业'] == industry] = 1.0
barra_factor[industry] = temp
return barra_factor
def get_basic_data(date, length, method='hdf'):
begin_date = w.tdaysoffset(-length, date).Data[0][0]
begin_date = ''.join(str(begin_date).split(' ')[0].split('-'))
if method == 'database':
conn = pymysql.connect(host='127.0.0.1',
port=3306,
user='root',
password='lyz940513',
db='mysql',
charset='utf8mb4',
cursorclass=pymysql.cursors.DictCursor)
cursor = conn.cursor()
cursor.execute('select distinct * from stockprice where tradedate<=%s and tradedate>=%s;' %(int(date), int(begin_date)))
data = cursor.fetchall()
data = pd.DataFrame(data)
#close
cursor.execute('select distinct * from stock_price where tradedate<=%s and tradedate>=%s;' %(int(date), int(begin_date)))
prime_close = cursor.fetchall()
prime_close = pd.DataFrame(prime_close)
prime_close = prime_close.pivot(index='tradedate',columns='secid',values='prime_close')
price_data = pd.Panel(load_data(data, prime_close))
elif method == 'hdf':
price_data = dict(pd.read_hdf('E:\multi_factor\price_data\price_data.h5', 'table'))
for key in price_data.keys():
data = price_data[key].copy()
data = data.ix[:date]
price_data[key] = data
price_data = pd.Panel(price_data)
# handle the fundmenl data from Tinysoft
try:
fundmental = get_fundmental_day(int(date))
except Exception as e:
print e
if not fundmental.empty:
fundmental_col = list(fundmental.columns)
for i in range(len(fundmental_col)):
fundmental_col[i] = fundmental_col[i].decode('utf-8')
fundmental.columns = fundmental_col
fundmental = fundmental[fundmental.st == 0]
fundmental = fundmental[fundmental.pt == 0]
fundmental[u'日期'] = map(str, fundmental[u'日期'])
fundmental[u'日期'] = pd.DatetimeIndex(fundmental[u'日期'])
fundmental[u'代码'] = map(lambda x: x[2:] + '.' + x[:2], fundmental[u'代码'])
fundmental = fundmental.set_index(u'代码')
else:
date_before = w.tdaysoffset(-1, date).Data[0][0]
date_before = ''.join(str(date_before).split(' ')[0].split('-'))
fundmental = pd.read_hdf('E:\multi_factor\\basic_factor\\fundmental_%s.h5' % date_before, 'table')
print "the data of %s is empty" % date
volume = price_data['volume'].ix[:date]
pct_wdqa = w.wsd('881001.WI', 'pct_chg', volume.index[0], volume.index[-1])
pct_wdqa = pd.Series(pct_wdqa.Data[0], index=volume.index) / 100.0
return fundmental, price_data, pct_wdqa
if __name__ == '__main__':
dt = datetime.now()
if dt.hour < 20:
date_before = w.tdaysoffset(-1, dt).Data[0][0]
date_before = ''.join(str(date_before).split(' ')[0].split('-'))
dt = date_before
date_list = map(lambda x: x.split('.')[0], os.listdir('E:/multi_factor/barra_factor'))
if not date_list:
last_date = '20070331'
else:
last_date = max(date_list)
tradedate = w.tdays(last_date, dt).Data[0]
tradedate = map(lambda x:''.join(str(x).split(' ')[0].split('-')), tradedate)
length = 540
for date in tradedate[1:]:
print date
fundmental, price_data, pct_wdqa = get_basic_data(date, length)
resid_ret = pd.read_hdf('E:\multi_factor\\basic_factor\\resid.return.h5','table')
fundmental.to_hdf('E:\multi_factor\\basic_factor\\fundmental_%s.h5' % date, 'table')
print fundmental[u'日期'][0]
print price_data['close'].index[-1]
barra_factor = create_daily_barra_factor(fundmental, price_data, pct_wdqa, resid_ret, date)
barra_factor['COUNTRY'] = 1
barra_factor.to_hdf('E:\multi_factor\\barra_factor\\%s.h5' % date, 'table')
print barra_factor
"""
Alpha = GtjaAlpha(price_data)
alpha_function = GtjaAlpha.__dict__.keys()
alpha_function.sort()
alpha_function = alpha_function[5:]
cap = price_data['close'] * price_data['total_shares']
alpha_facor = pd.DataFrame()
for alpha_name in alpha_function:
print "========================caculating %s =============================" % alpha_name
try:
alpha = eval('Alpha.%s()' % alpha_name).dropna(how='all')
# cleaning and standardize alpha data
alpha = alpha.replace([-np.inf, np.inf], np.nan)
alpha = standardize_cap_day(alpha.iloc[-1], cap.iloc[-1])
alpha = alpha.ix[barra_factor.index]
alpha = alpha.fillna(alpha.quantile())
del barra_factor['COUNTRY']
model = sm.OLS(alpha, barra_factor).fit()
alpha_factor[alpha_name] = standardize_cap_day(model.resid, cap.iloc[-1])
alpha_factor.to_hdf('E:\multi_factor\\alpha_factor\\%s.h5' % date, 'table')
print alpha_factor
"""