-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathalpha_tools.py
227 lines (185 loc) · 7.26 KB
/
alpha_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 09:33:07 2017
@author: lh
"""
import numpy as np
import pandas as pd
from WindPy import w
import statsmodels.api as sm
w.start()
def winsorize_series(se):
q = se.quantile([0.025, 0.975])
if isinstance(q, pd.Series) and len(q) == 2:
se[se < q.iloc[0]] = q.iloc[0]
se[se > q.iloc[1]] = q.iloc[1]
return se
def winsorize(factor):
return factor.apply(winsorize_series, axis=1)
def standarlize(factor):
factor = factor.dropna(how='all')
factor_std = ((factor.T - factor.mean(axis=1)) / factor.std(axis=1)).T
return factor_std
def ic_caculate(factor, pctChange, period):
ic = []
index = factor.index
for i in range(factor.shape[0] - period):
ic_value = factor.ix[index[i]].corr(pctChange.ix[index[i + period]])
ic.append(ic_value)
return pd.Series(ic, index=index[:len(index) - period])
def rankic(factor, pctchange, period):
factor_rank = factor.rank(axis=1)
pctchange_rank = pctchange.rank(axis=1)
return ic_caculate(factor_rank, pctchange_rank, period)
def factor_handle(factor):
factor = winsorize(factor)
factor = standarlize(factor)
return factor
def group_backtest(factor, volume, close, group_num, quantile, fee, period):
pct_chg = close.pct_change()
stockpool = pd.Series(np.zeros(factor.shape[1]), index=factor.columns)
cash = 1.0
net_value = []
for i in range(1, factor.shape[0], period):
date = factor.index[i]
factor_today = factor.ix[factor.index[i - 1]].sort_values().dropna()
close_today = close.ix[date]
pct_chg_today = pct_chg.ix[date]
vol_today = volume.ix[date]
inteval_len = factor_today.shape[0] / group_num
tobuy = factor_today[
(quantile - 1) * inteval_len:quantile * inteval_len].index
tosell = stockpool[stockpool > 0].index
first_sell = list(set(tosell) - set(tobuy))
for stock in first_sell:
if pct_chg_today[stock] > -0.099 and vol_today[stock] > 0:
cash += close_today[stock] * stockpool[stock] * (1 - fee)
stockpool[stock] = 0.0
last_buy = list(set(tobuy) - set(tosell))
buy_num = len(last_buy)
if buy_num > 0:
per_money = cash / (buy_num + 0.0)
for stock in last_buy:
if pct_chg_today[stock] < 0.99 and vol_today[stock] > 0:
stockpool[stock] += per_money / close_today[stock] * (1 - fee)
cash -= per_money
pool = stockpool[stockpool > 0]
net_value.append((pool * close_today[pool.index]).sum() + cash)
return pd.Series(
net_value,
index=factor.index[
range(
1,
factor.shape[0],
period)])
def group_result(pctchange, dic, period):
net_value = dict()
for s in dic.keys():
group = dic[s]
zz = pd.Series([pctchange.iloc[i][dic[s][i - period]].mean()
for i in range(period, len(pctchange))]) + 1
net_value[s] = zz.cumprod()
res = pd.DataFrame(net_value)
res.index = pctchange.index[period:]
return res
def generate_group(factor, group_num):
dic = dict()
for i in range(1, group_num + 1):
dic[i] = []
for line in range(factor.shape[0]):
temp = factor.iloc[line].copy()
temp = temp.dropna().sort_values()
interval = len(temp) / group_num
for quantile in range(1, group_num + 1):
dic[quantile].append(
temp[
(quantile -
1) *
interval:quantile *
interval].index)
return dic
def mean_return(factor, pctchange, group_num, period):
dic = generate_group(factor, group_num)
group_return = dict()
pctchange = pctchange.ix[factor.index]
for key in dic.keys():
group_return[key] = pd.Series([pctchange.iloc[i][dic[key][i - period]].mean()
for i in range(period, len(pctchange))]).mean()
return pd.Series(group_return)
def quick_test(factor, pctChange, group_num, period):
dic = generate_group(factor, group_num)
pctChange = pctChange.ix[factor.index]
res = group_result(pctChange, dic, period)
return res
def hedge_curve(net_value, benchmark_code):
benchmark = w.wsd(benchmark_code, "pct_chg", net_value.index[
0], net_value.index[-1], "PriceAdj=B")
benchmark = pd.Series(benchmark.Data[0], index=net_value.index) / 100.0
net_value_pct = net_value.pct_change()
hedge_res = (net_value_pct.apply(lambda x: x - benchmark) + 1).cumprod()
return hedge_res
def returns_sta(net_value):
grouped = net_value.groupby(lambda x: x.split('-')[0])
return grouped.apply(lambda x: x.iloc[-1] / x.iloc[0] - 1)
def cap_neutral(factor, mkt_value):
new_factor = factor.copy().dropna(how='all')
for i in range(new_factor.shape[0]):
a = new_factor.iloc[i].dropna()
mkt = mkt_value.iloc[i].ix[a.index].dropna()
a = a[mkt.index]
resduies = sm.OLS(a, mkt).fit().resid
new_factor.iloc[i].ix[a.index] = resduies
return new_factor
def industry_neutral(factor, industry_list):
pass
def t_value(factor, pctchange, period):
tvalues = []
rsquares = []
new_factor = factor.copy().dropna(how='all')
pctchange_copy = pctchange.ix[new_factor.index]
for i in range(new_factor.shape[0] - period):
factor_value = new_factor.iloc[i].dropna()
pct_chg = pctchange_copy.iloc[
i +
period].ix[
factor_value.index].dropna()
factor_value = factor_value[pct_chg.index]
results = sm.OLS(pct_chg, factor_value).fit()
tvalue = results.tvalues[0]
rsquare = results.rsquared
tvalues.append(tvalue)
rsquares.append(rsquare)
return pd.DataFrame({'tvalue': tvalues, 'rsquare': rsquares},
index=new_factor.index[:-period])
def tvalue_sta(tvalues):
positive = tvalues[tvalues > 2].shape[0]
negtive = tvalues[tvalues < -2].shape[0]
total = tvalues.shape[0]
return [(positive + negtive + 0.0) / total, (positive + 0.0) / negtive]
def quantile_mkt_values(signal_df, mkt_df):
n_quantile = 10
# 统计十分位数
cols_mean = [i + 1 for i in range(n_quantile)]
cols = cols_mean
mkt_value_means = pd.DataFrame(index=signal_df.index, columns=cols)
# 计算分组的市值分位数平均值
for dt in mkt_value_means.index:
if dt not in mkt_df.index:
continue
qt_mean_results = []
tmp_factor = signal_df.ix[dt].dropna()
tmp_mkt_value = mkt_df.ix[dt].dropna()
tmp_mkt_value = tmp_mkt_value.rank() / len(tmp_mkt_value)
pct_quantiles = 1.0 / n_quantile
for i in range(n_quantile):
down = tmp_factor.quantile(
pct_quantiles * i)
up = tmp_factor.quantile(pct_quantiles * (i + 1))
i_quantile_index = tmp_factor[
(tmp_factor <= up) & (
tmp_factor >= down)].index
mean_tmp = tmp_mkt_value[i_quantile_index].mean()
qt_mean_results.append(mean_tmp)
mkt_value_means.ix[dt] = qt_mean_results
mkt_value_means.dropna(inplace=True)
return mkt_value_means.mean()