-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive_bilevel_algorithms.jl
428 lines (343 loc) · 11.2 KB
/
adaptive_bilevel_algorithms.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
using Logging
using LinearAlgebra
using ProximalCore: prox, Zero
import ProximalCore: prox, prox!
# Utilities.
is_logstep(n; base = 10) = mod(n, base^(log(base, n) |> floor)) == 0
nan_to_zero(v) = ifelse(isnan(v), zero(v), v)
# Adaptive proximal bilevel algorithms.
# All algorithms implemented as special cases of one generic loop.
Base.@kwdef struct OurRuleLS{R}
gamma::R
sigk1::R
gamax::R
beta::Union{R, Counting{R}}
end
function OurRuleLS(;gamma = 0, sigk1 = 1.0, gamax = one(gamma)*1000_000, beta = Counting(0.5))
_gamma = if gamma > 0
gamma
else
error("you must provide gamk1 > 0")
end
_sigk1 = if sigk1 > 0
sigk1
else
error("you must provide sigma > 0")
end
R = typeof(gamma)
return OurRuleLS{R}(_gamma, _sigk1, gamax, beta)
end
function stepsize(rule::OurRuleLS)
gamma = rule.gamma
sigk1 = rule.sigk1
R = typeof(gamma)
return gamma, sigk1
end
# AdaBiM algorithm for convex structured bilevel problems
#
# See Latafat, P., Themelis, A., Villa, S., and Patrinos, P. (2023). AdaBiM: An adaptive proximal gradient method
# for structured convex bilevel optimization. arXiv preprint arXiv:2305.03559.
function adaptive_bilevel_LS(
x;
f1,
f2,
g1,
g2,
rule,
mu = 0.0,
nu = 0.98,
tol = 1e-5,
maxit = 10_000,
record_fn = nothing,
name = "AdaBiM",
)
gamk1, sigk1 = stepsize(rule)
beta = rule.beta #backtrack param
record = []
x_prev = x
grad1_x_prev, _ = gradient(f1, x_prev)
grad2_x_prev, _ = gradient(f2, x_prev)
grad_x_prev = sigk1 * grad1_x_prev + grad2_x_prev
x, _ = prox(g1, g2, x_prev - gamk1 * grad_x_prev, gamk1, sigk1) # x0
grad1_x, _ = gradient(f1, x)
grad2_x, _ = gradient(f2, x)
grad_x = sigk1 * grad1_x + grad2_x
gam_prev = gamk1
sig_prev = sigk1
sigk = sigk1
for it = 1:maxit
C = norm(grad_x - grad_x_prev)^2 / dot(grad_x - grad_x_prev, x - x_prev) |> nan_to_zero
L = dot(grad_x - grad_x_prev, x - x_prev) / norm(x - x_prev)^2 |> nan_to_zero
L2 = dot(grad2_x - grad2_x_prev, x - x_prev) / norm(x - x_prev)^2 |> nan_to_zero
D = gamk1 * L * (gamk1 * C - 1) - gamk1*sigk * mu /2 |> nan_to_zero
tau_prev = sigk/sig_prev
sigk1 = min(max(1/it, 3* sigk / 4), sigk) # sig+
tau = sigk1/sigk
rho = gamk1 / gam_prev * tau_prev
gam_prev = gamk1
gamk1 = min(
(gam_prev / tau) * sqrt( (1 + rho)*tau_prev ),
(gam_prev / tau) * sqrt( 1 + 2 * mu * sigk * gam_prev - 4*( 1- tau_prev ) * gam_prev * L2) / (2* sqrt(max(D,0))),
rule.gamax,
)
sigk, sig_prev = sigk1, sigk
grad_x = sigk1 * grad1_x + grad2_x # nabla f_{k+1}(x^k)
grad2_x_prev = grad2_x
grad1_x_prev = grad1_x
x_prev, grad_x_prev = x, grad_x
while true
v = x_prev - gamk1 * grad_x_prev
x, _ = prox(g1, g2, v, gamk1, sigk1)
grad1_x, _ = gradient(f1, x)
grad2_x, _ = gradient(f2, x)
grad_x = sigk1 * grad1_x + grad2_x
ell = dot(grad_x - grad_x_prev, x - x_prev) / norm(x - x_prev)^2 |> nan_to_zero
if gamk1 * (ell - sigk * mu / 2 ) <= nu + 1e-12
break
end
gamk1 = beta * gamk1
if gamk1 <= 1e-8
@info("stepsize in the linesearch is too small")
end
end
norm_res = norm_res_eval(g1, x_prev, x, gamk1, sigk1, grad2_x, grad_x_prev)
if record_fn !== nothing
push!(record, record_fn(x, f1, f2, g1, g2, gamk1, sigk1, norm_res, norm(grad2_x), beta) ) ##### bug prone
end
if is_logstep(it, base = 10)
@info "$name" it norm_res
end
end
return x, maxit, record
end
function norm_res_eval(g1::Zero, x_prev, x, gamk1, sigk1, grad2_x, grad_x_prev)
norm_res = norm( (x_prev - x)./gamk1 + grad2_x - grad_x_prev)
return norm_res
end
function norm_res_eval(g1, x_prev, x, gamk1, sigk1, grad2_x, grad_x_prev)
norm_res = norm( (x_prev - x)./gamk1 + grad2_x - grad_x_prev)
return norm_res
end
function norm_res_eval(g1::SqrNormL2, x_prev, x, gamk1, sigk1, grad2_x, grad_x_prev)
norm_res = norm( (x_prev - x)./gamk1 + grad2_x - grad_x_prev - sigk1 * x)
return norm_res
end
Base.@kwdef struct OurRule{R}
sigk1::R
Lf1::R
Lf2::R
end
function OurRule(;sigma = 1.0, Lf = [0.0, 0.0])
_sigk1 = if sigma > 0
sigma
else
error("you must provide sigma > 0")
end
R = typeof(sigma)
return OurRule{R}(_sigk1, Lf[1], Lf[2])
end
stepsize(rule::OurRule) = (rule.sigk1, rule.Lf1, rule.Lf2)
# StaBiM algorithm for convex structured bilevel problems
#
# See Latafat, P., Themelis, A., Villa, S., and Patrinos, P. (2023). AdaBiM: An adaptive proximal gradient method
# for structured convex bilevel optimization. arXiv preprint arXiv:2305.03559.
function adaptive_bilevel_static(
x;
f1,
f2,
g1,
g2,
rule,
tol = 1e-5,
maxit = 10_000,
record_fn = nothing,
name = "StaBiM",
)
sigk1, Lf1, Lf2 = stepsize(rule)
gamk1 = 0.99 / (sigk1 * Lf1 + Lf2)
record = []
grad1_x, _ = gradient(f1, x)
grad2_x, _ = gradient(f2, x)
grad_x = sigk1 * grad1_x + grad2_x
v = x - gamk1 * grad_x
x, _ = prox(g1, g2, v, gamk1, sigk1)
for it = 1:maxit
sigk1 = min(max(1/it, 3* sigk1 / 4), sigk1)
gamk1 = 0.99 / (sigk1 * Lf1 + Lf2)
x_prev= x
grad_x_prev = sigk1 * grad1_x + grad2_x
grad1_x, _ = gradient(f1, x)
grad2_x, _ = gradient(f2, x)
grad_x = sigk1 * grad1_x + grad2_x
v = x_prev - gamk1 * grad_x_prev
x, _ = prox(g1, g2, v, gamk1, sigk1)
norm_res = norm_res_eval(g1, x_prev, x, gamk1, sigk1, grad2_x, grad_x_prev)
if record_fn !== nothing
push!(record, record_fn(x, f1, f2, g1, g2, gamk1, sigk1, norm_res, norm(grad2_x), 0.0) ) ##### bug prone
end
if is_logstep(it, base = 10)
@info "$name" it norm_res
end
end
return x, maxit, record
end
# SEDM: Solodov's explicit descent method
#
# See Mikhail Solodov. An explicit descent method for bilevel convex optimization. Journal of Convex Analysis,
# 14(2):227, 2007.
function backtracking_Solodov(x0; f1, f2, g, gamma0, sigma0 =1.0, theta = 0.98, beta = Counting(0.5), tol = 1e-5, maxit = 100_000, record_fn = nothing)
x, z, gamma, sigma = x0, x0, gamma0, sigma0
grad1_x, f1_val = gradient(f1, x)
grad2_x, f2_val = gradient(f2, x)
grad_x = sigma * grad1_x + grad2_x
f_x = f1_val * sigma + f2_val
record = []
for it = 1:maxit
gamma = gamma0
z, _ = prox(g, x - gamma * grad_x, gamma)
phik_x = f_x + g(x)
ub_z = theta * real(dot(grad_x, z - x))
while sigma * f1(z) + f2(z) + g(z) > phik_x + ub_z
gamma = beta * gamma
if gamma < 1e-12
@error "step size became too small ($gamma)"
end
z, _ = prox(g, x - gamma * grad_x, gamma)
ub_z = theta * real(dot(grad_x, z - x))
end
grad1_z, f1_z = gradient(f1, z)
grad2_z, f2_z = gradient(f2, z)
sigma = min(sigma, 1/it)
grad_z = sigma * grad1_z + grad2_z
f_z = sigma * f1_z + f2_z
norm_res = norm( (x - z) ./ gamma + grad2_z - grad_x )
if record_fn !== nothing
push!(record, record_fn(x, f1, f2, Zero(), g, gamma, sigma, norm_res, norm(grad2_z), beta))
end
if is_logstep(it, base = 10)
@info "Backtracking PG with Armijo LS" it norm_res
end
x, f_x, grad_x = z, f_z, grad_z
end
return z, maxit, record
end
# BiG-SAM algorithm for convex bilevel problems
#
# See Shoham Sabach and Shimrit Shtern. A first order method for solving convex bilevel optimization problems. SIAM
# Journal on Optimization, 27(2):640–660, 2017.
function BiGSAM(
x;
f1,
f2,
g,
gamma, # t
tau, # s
sigma = 1.0,
tol = 1e-5,
maxit = 1_000,
record_fn = nothing,
name = "BiGSAM",
)
record = []
for it = 1:maxit
grad2_x, _ = gradient(f2, x)
y, ~ = prox(g, x - gamma * grad2_x, gamma)
grad1_x, _ = gradient(f1, x)
z = x - tau * grad1_x
x_prev = x
x = sigma * z + (1 - sigma) * y
sigma = sigma/ (1+ sigma)
# optimality of lower level
gradf2_x_temp, ~ = gradient(nocount(f2), y)
norm_res = norm((x_prev - y) ./ gamma + gradf2_x_temp - grad2_x) # lower level
if record_fn !== nothing
push!(record, record_fn(x, f1, f2, Zero(), g, gamma, sigma, norm_res, norm(grad2_x), 0.0) )
end
if is_logstep(it, base = 10)
@info "$name" it norm_res
end
end
return x, maxit, record
end
# Diagonal Dual Descent (3-D) algorithm for convex bilevel problems (implemented only for D_y = 1/2|. - y|^2 and R = 1/2|.|^2)
#
# See Guillaume Garrigos, Lorenzo Rosasco, and Silvia Villa. Iterative regularization via dual diagonal descent. Jour-
# nal of Mathematical Imaging and Vision, 60:189–215, 2018.
function Iterative3_D(
x;
f1,
f2,
gamma, # tau
sigma = 1.0, # alpha
tol = 1e-5,
maxit = 10_000,
record_fn = nothing,
name = "Iterative3D",
)
record = []
if norm(x) >= 1e-8
@warn "Make sure x0 lies in the image of A'"
end
for it = 1:maxit
grad1_x, _ = gradient(f1, x)
grad2_x, _ = gradient(f2, x)
grad_x = sigma .* grad1_x + grad2_x
x = x - gamma .* grad_x
sigma = 1/it^2
norm_res = norm(grad2_x)
if record_fn !== nothing
push!(record, record_fn(x, f1, f2, Zero(), Zero(), gamma, sigma, norm_res, norm(grad2_x), 0.0))
end
if is_logstep(it, base = 10)
@info "$name" it norm_res
end
end
return x, maxit, record
end
# evaluation of prox_{sigk g1 + g2}
function prox(g1::Zero, g2, x, gamma, sigk1)
y = similar(x)
gy = prox!(y, g2, x, gamma)
return y, g1(y) * sigk1 + gy
end
function prox(g1, g2::Zero, x, gamma, sigk1)
y = similar(x)
gy = prox!(y, g1, x, gamma * sigk1)
return y, gy * sigk1 + g2(y)
end
function prox(g1::Zero, g2::Zero, x, gamma, sigk1)
return x, eltype(x)(0)
end
function prox(g1::SqrNormL2, g2, x, gamma, sigk1)
R = real(eltype(x))
y = similar(x)
mu = g1.lambda * sigk1
gam = gamma
gam_new = R(1) / (R(1) + mu * gam)
gy = prox!(y, g2, gam_new .* x, gam_new .* gam)
return y, sigk1* g1(y) + gy
end
function prox(g1, g2::SqrNormL2, x, gamma, sigk1)
R = real(eltype(x))
y = similar(x)
gam = gamma*sigk1
mu = g2.lambda * gamma
gam_new = R(1) / (R(1) + mu * gam)
gy = prox!(y, g1, gam_new .* x, gam_new .* gam)
return y, sigk1 * gy + g2(y)
end
function prox(g1::Zero, g2::SqrNormL2, x, gamma, sigk1)
y = similar(x)
gy = prox!(y, g2, x, gamma)
return y, gy
end
function prox(g1::SqrNormL2, g2::Zero, x, gamma, sigk1)
y = similar(x)
gy = prox!(y, g1, x, gamma * sigk1)
return y, sigk1 * gy
end
function gradient(f::Zero, x)
y = similar(x)
y .= eltype(x)(0)
return y, f(x)
end