-
-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathtiming.py
149 lines (120 loc) · 3.89 KB
/
timing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
###################################################################
# Numexpr - Fast numerical array expression evaluator for NumPy.
#
# License: MIT
# Author: See AUTHORS.txt
#
# See LICENSE.txt and LICENSES/*.txt for details about copyright and
# rights to use.
####################################################################
from __future__ import print_function
import timeit
import numpy
array_size = 5e6
iterations = 2
# Choose the type you want to benchmark
#dtype = 'int8'
#dtype = 'int16'
#dtype = 'int32'
#dtype = 'int64'
dtype = 'float32'
#dtype = 'float64'
def compare_times(setup, expr):
print("Expression:", expr)
namespace = {}
exec(setup, namespace)
numpy_timer = timeit.Timer(expr, setup)
numpy_time = numpy_timer.timeit(number=iterations)
print('numpy:', numpy_time / iterations)
try:
weave_timer = timeit.Timer('blitz("result=%s")' % expr, setup)
weave_time = weave_timer.timeit(number=iterations)
print("Weave:", weave_time/iterations)
print("Speed-up of weave over numpy:", round(numpy_time/weave_time, 2))
except:
print("Skipping weave timing")
numexpr_timer = timeit.Timer('evaluate("%s", optimization="aggressive")' % expr, setup)
numexpr_time = numexpr_timer.timeit(number=iterations)
print("numexpr:", numexpr_time/iterations)
tratio = numpy_time/numexpr_time
print("Speed-up of numexpr over numpy:", round(tratio, 2))
return tratio
setup1 = """\
from numpy import arange
try: from scipy.weave import blitz
except: pass
from numexpr import evaluate
result = arange(%f, dtype='%s')
b = arange(%f, dtype='%s')
c = arange(%f, dtype='%s')
d = arange(%f, dtype='%s')
e = arange(%f, dtype='%s')
""" % ((array_size, dtype)*5)
expr1 = 'b*c+d*e'
setup2 = """\
from numpy import arange
try: from scipy.weave import blitz
except: pass
from numexpr import evaluate
a = arange(%f, dtype='%s')
b = arange(%f, dtype='%s')
result = arange(%f, dtype='%s')
""" % ((array_size, dtype)*3)
expr2 = '2*a+3*b'
setup3 = """\
from numpy import arange, sin, cos, sinh
try: from scipy.weave import blitz
except: pass
from numexpr import evaluate
a = arange(2*%f, dtype='%s')[::2]
b = arange(%f, dtype='%s')
result = arange(%f, dtype='%s')
""" % ((array_size, dtype)*3)
expr3 = '2*a + (cos(3)+5)*sinh(cos(b))'
setup4 = """\
from numpy import arange, sin, cos, sinh, arctan2
try: from scipy.weave import blitz
except: pass
from numexpr import evaluate
a = arange(2*%f, dtype='%s')[::2]
b = arange(%f, dtype='%s')
result = arange(%f, dtype='%s')
""" % ((array_size, dtype)*3)
expr4 = '2*a + arctan2(a, b)'
setup5 = """\
from numpy import arange, sin, cos, sinh, arctan2, sqrt, where
try: from scipy.weave import blitz
except: pass
from numexpr import evaluate
a = arange(2*%f, dtype='%s')[::2]
b = arange(%f, dtype='%s')
result = arange(%f, dtype='%s')
""" % ((array_size, dtype)*3)
expr5 = 'where(0.1*a > arctan2(a, b), 2*a, arctan2(a,b))'
expr6 = 'where(a != 0.0, 2, b)'
expr7 = 'where(a-10 != 0.0, a, 2)'
expr8 = 'where(a%2 != 0.0, b+5, 2)'
expr9 = 'where(a%2 != 0.0, 2, b+5)'
expr10 = 'a**2 + (b+1)**-2.5'
expr11 = '(a+1)**50'
expr12 = 'sqrt(a**2 + b**2)'
def compare(check_only=False):
experiments = [(setup1, expr1), (setup2, expr2), (setup3, expr3),
(setup4, expr4), (setup5, expr5), (setup5, expr6),
(setup5, expr7), (setup5, expr8), (setup5, expr9),
(setup5, expr10), (setup5, expr11), (setup5, expr12),
]
total = 0
for params in experiments:
total += compare_times(*params)
print
average = total / len(experiments)
print("Average =", round(average, 2))
return average
if __name__ == '__main__':
import numexpr
print("Numexpr version: ", numexpr.__version__)
averages = []
for i in range(iterations):
averages.append(compare())
print("Averages:", ', '.join("%.2f" % x for x in averages))