-
Notifications
You must be signed in to change notification settings - Fork 733
/
Copy pathtools.py
404 lines (328 loc) · 14.7 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from __future__ import annotations as _annotations
import dataclasses
import inspect
from collections.abc import Awaitable, Sequence
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, Union, cast
from pydantic import ValidationError
from pydantic.json_schema import GenerateJsonSchema, JsonSchemaValue
from pydantic_core import SchemaValidator, core_schema
from typing_extensions import Concatenate, ParamSpec, TypeAlias, TypedDict, TypeVar
from . import _pydantic, _utils, messages as _messages, models
from .exceptions import ModelRetry, UnexpectedModelBehavior
if TYPE_CHECKING:
from .result import Usage
__all__ = (
'AgentDepsT',
'DocstringFormat',
'FunctionSchema',
'RunContext',
'SystemPromptFunc',
'ToolFuncContext',
'ToolFuncPlain',
'ToolFuncEither',
'ToolParams',
'ToolPrepareFunc',
'Tool',
'ObjectJsonSchema',
'ToolDefinition',
)
AgentDepsT = TypeVar('AgentDepsT', default=None, contravariant=True)
"""Type variable for agent dependencies."""
class FunctionSchema(TypedDict):
"""Internal information about a function schema."""
description: str
validator: SchemaValidator
json_schema: ObjectJsonSchema
# if not None, the function takes a single by that name (besides potentially `info`)
single_arg_name: str | None
positional_fields: list[str]
var_positional_field: str | None
@dataclasses.dataclass
class RunContext(Generic[AgentDepsT]):
"""Information about the current call."""
deps: AgentDepsT
"""Dependencies for the agent."""
model: models.Model
"""The model used in this run."""
usage: Usage
"""LLM usage associated with the run."""
prompt: str | Sequence[_messages.UserContent]
"""The original user prompt passed to the run."""
messages: list[_messages.ModelMessage] = field(default_factory=list)
"""Messages exchanged in the conversation so far."""
tool_call_id: str | None = None
"""The ID of the tool call."""
tool_name: str | None = None
"""Name of the tool being called."""
retry: int = 0
"""Number of retries so far."""
run_step: int = 0
"""The current step in the run."""
def replace_with(
self, retry: int | None = None, tool_name: str | None | _utils.Unset = _utils.UNSET
) -> RunContext[AgentDepsT]:
# Create a new `RunContext` a new `retry` value and `tool_name`.
kwargs = {}
if retry is not None:
kwargs['retry'] = retry
if tool_name is not _utils.UNSET:
kwargs['tool_name'] = tool_name
return dataclasses.replace(self, **kwargs)
ToolParams = ParamSpec('ToolParams', default=...)
"""Retrieval function param spec."""
SystemPromptFunc = Union[
Callable[[RunContext[AgentDepsT]], str],
Callable[[RunContext[AgentDepsT]], Awaitable[str]],
Callable[[], str],
Callable[[], Awaitable[str]],
]
"""A function that may or maybe not take `RunContext` as an argument, and may or may not be async.
Usage `SystemPromptFunc[AgentDepsT]`.
"""
ToolFuncContext = Callable[Concatenate[RunContext[AgentDepsT], ToolParams], Any]
"""A tool function that takes `RunContext` as the first argument.
Usage `ToolContextFunc[AgentDepsT, ToolParams]`.
"""
ToolFuncPlain = Callable[ToolParams, Any]
"""A tool function that does not take `RunContext` as the first argument.
Usage `ToolPlainFunc[ToolParams]`.
"""
ToolFuncEither = Union[ToolFuncContext[AgentDepsT, ToolParams], ToolFuncPlain[ToolParams]]
"""Either kind of tool function.
This is just a union of [`ToolFuncContext`][pydantic_ai.tools.ToolFuncContext] and
[`ToolFuncPlain`][pydantic_ai.tools.ToolFuncPlain].
Usage `ToolFuncEither[AgentDepsT, ToolParams]`.
"""
ToolPrepareFunc: TypeAlias = 'Callable[[RunContext[AgentDepsT], ToolDefinition], Awaitable[ToolDefinition | None]]'
"""Definition of a function that can prepare a tool definition at call time.
See [tool docs](../tools.md#tool-prepare) for more information.
Example — here `only_if_42` is valid as a `ToolPrepareFunc`:
```python {noqa="I001"}
from typing import Union
from pydantic_ai import RunContext, Tool
from pydantic_ai.tools import ToolDefinition
async def only_if_42(
ctx: RunContext[int], tool_def: ToolDefinition
) -> Union[ToolDefinition, None]:
if ctx.deps == 42:
return tool_def
def hitchhiker(ctx: RunContext[int], answer: str) -> str:
return f'{ctx.deps} {answer}'
hitchhiker = Tool(hitchhiker, prepare=only_if_42)
```
Usage `ToolPrepareFunc[AgentDepsT]`.
"""
DocstringFormat = Literal['google', 'numpy', 'sphinx', 'auto']
"""Supported docstring formats.
* `'google'` — [Google-style](https://google.github.io/styleguide/pyguide.html#381-docstrings) docstrings.
* `'numpy'` — [Numpy-style](https://numpydoc.readthedocs.io/en/latest/format.html) docstrings.
* `'sphinx'` — [Sphinx-style](https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html#the-sphinx-docstring-format) docstrings.
* `'auto'` — Automatically infer the format based on the structure of the docstring.
"""
A = TypeVar('A')
class GenerateToolJsonSchema(GenerateJsonSchema):
def typed_dict_schema(self, schema: core_schema.TypedDictSchema) -> JsonSchemaValue:
s = super().typed_dict_schema(schema)
total = schema.get('total')
if total is not None:
s['additionalProperties'] = not total
return s
def _named_required_fields_schema(self, named_required_fields: Sequence[tuple[str, bool, Any]]) -> JsonSchemaValue:
# Remove largely-useless property titles
s = super()._named_required_fields_schema(named_required_fields)
for p in s.get('properties', {}):
s['properties'][p].pop('title', None)
return s
@dataclass(init=False)
class Tool(Generic[AgentDepsT]):
"""A tool function for an agent."""
function: ToolFuncEither[AgentDepsT]
takes_ctx: bool
max_retries: int | None
name: str
description: str
function_schema: FunctionSchema | None
prepare: ToolPrepareFunc[AgentDepsT] | None
docstring_format: DocstringFormat
require_parameter_descriptions: bool
_is_async: bool = field(init=False)
_single_arg_name: str | None = field(init=False)
_positional_fields: list[str] = field(init=False)
_var_positional_field: str | None = field(init=False)
_validator: SchemaValidator = field(init=False, repr=False)
_parameters_json_schema: ObjectJsonSchema = field(init=False)
# TODO: Move this state off the Tool class, which is otherwise stateless.
# This should be tracked inside a specific agent run, not the tool.
current_retry: int = field(default=0, init=False)
def __init__(
self,
function: ToolFuncEither[AgentDepsT],
*,
takes_ctx: bool | None = None,
max_retries: int | None = None,
name: str | None = None,
description: str | None = None,
function_schema: FunctionSchema | None = None,
prepare: ToolPrepareFunc[AgentDepsT] | None = None,
docstring_format: DocstringFormat = 'auto',
require_parameter_descriptions: bool = False,
schema_generator: type[GenerateJsonSchema] = GenerateToolJsonSchema,
):
"""Create a new tool instance.
Example usage:
```python {noqa="I001"}
from pydantic_ai import Agent, RunContext, Tool
async def my_tool(ctx: RunContext[int], x: int, y: int) -> str:
return f'{ctx.deps} {x} {y}'
agent = Agent('test', tools=[Tool(my_tool)])
```
or with a custom prepare method:
```python {noqa="I001"}
from typing import Union
from pydantic_ai import Agent, RunContext, Tool
from pydantic_ai.tools import ToolDefinition
async def my_tool(ctx: RunContext[int], x: int, y: int) -> str:
return f'{ctx.deps} {x} {y}'
async def prep_my_tool(
ctx: RunContext[int], tool_def: ToolDefinition
) -> Union[ToolDefinition, None]:
# only register the tool if `deps == 42`
if ctx.deps == 42:
return tool_def
agent = Agent('test', tools=[Tool(my_tool, prepare=prep_my_tool)])
```
Args:
function: The Python function to call as the tool.
takes_ctx: Whether the function takes a [`RunContext`][pydantic_ai.tools.RunContext] first argument,
this is inferred if unset.
max_retries: Maximum number of retries allowed for this tool, set to the agent default if `None`.
name: Name of the tool, inferred from the function if `None`.
description: Description of the tool, inferred from the function if `None`.
function_schema: Function schema of the tool, inferred from the function if `None`.
prepare: custom method to prepare the tool definition for each step, return `None` to omit this
tool from a given step. This is useful if you want to customise a tool at call time,
or omit it completely from a step. See [`ToolPrepareFunc`][pydantic_ai.tools.ToolPrepareFunc].
docstring_format: The format of the docstring, see [`DocstringFormat`][pydantic_ai.tools.DocstringFormat].
Defaults to `'auto'`, such that the format is inferred from the structure of the docstring.
require_parameter_descriptions: If True, raise an error if a parameter description is missing. Defaults to False.
schema_generator: The JSON schema generator class to use. Defaults to `GenerateToolJsonSchema`.
"""
if takes_ctx is None:
takes_ctx = _pydantic.takes_ctx(function)
f = self.function_schema = function_schema or _pydantic.function_schema(
function, takes_ctx, docstring_format, require_parameter_descriptions, schema_generator
)
self.function = function
self.takes_ctx = takes_ctx
self.max_retries = max_retries
self.name = name or function.__name__
self.description = description or f['description']
self.prepare = prepare
self.docstring_format = docstring_format
self.require_parameter_descriptions = require_parameter_descriptions
self._is_async = inspect.iscoroutinefunction(self.function)
self._single_arg_name = f['single_arg_name']
self._positional_fields = f['positional_fields']
self._var_positional_field = f['var_positional_field']
self._validator = f['validator']
self._parameters_json_schema = f['json_schema']
async def prepare_tool_def(self, ctx: RunContext[AgentDepsT]) -> ToolDefinition | None:
"""Get the tool definition.
By default, this method creates a tool definition, then either returns it, or calls `self.prepare`
if it's set.
Returns:
return a `ToolDefinition` or `None` if the tools should not be registered for this run.
"""
tool_def = ToolDefinition(
name=self.name,
description=self.description,
parameters_json_schema=self._parameters_json_schema,
)
if self.prepare is not None:
return await self.prepare(ctx, tool_def)
else:
return tool_def
async def run(
self, message: _messages.ToolCallPart, run_context: RunContext[AgentDepsT]
) -> _messages.ToolReturnPart | _messages.RetryPromptPart:
"""Run the tool function asynchronously."""
try:
if isinstance(message.args, str):
args_dict = self._validator.validate_json(message.args)
else:
args_dict = self._validator.validate_python(message.args)
except ValidationError as e:
return self._on_error(e, message)
args, kwargs = self._call_args(args_dict, message, run_context)
try:
if self._is_async:
function = cast(Callable[[Any], Awaitable[str]], self.function)
response_content = await function(*args, **kwargs)
else:
function = cast(Callable[[Any], str], self.function)
response_content = await _utils.run_in_executor(function, *args, **kwargs)
except ModelRetry as e:
return self._on_error(e, message)
self.current_retry = 0
return _messages.ToolReturnPart(
tool_name=message.tool_name,
content=response_content,
tool_call_id=message.tool_call_id,
)
def _call_args(
self,
args_dict: dict[str, Any],
message: _messages.ToolCallPart,
run_context: RunContext[AgentDepsT],
) -> tuple[list[Any], dict[str, Any]]:
if self._single_arg_name:
args_dict = {self._single_arg_name: args_dict}
ctx = dataclasses.replace(
run_context,
retry=self.current_retry,
tool_name=message.tool_name,
tool_call_id=message.tool_call_id,
)
args = [ctx] if self.takes_ctx else []
for positional_field in self._positional_fields:
args.append(args_dict.pop(positional_field))
if self._var_positional_field:
args.extend(args_dict.pop(self._var_positional_field))
return args, args_dict
def _on_error(
self, exc: ValidationError | ModelRetry, call_message: _messages.ToolCallPart
) -> _messages.RetryPromptPart:
self.current_retry += 1
if self.max_retries is None or self.current_retry > self.max_retries:
raise UnexpectedModelBehavior(f'Tool exceeded max retries count of {self.max_retries}') from exc
else:
if isinstance(exc, ValidationError):
content = exc.errors(include_url=False)
else:
content = exc.message
return _messages.RetryPromptPart(
tool_name=call_message.tool_name,
content=content,
tool_call_id=call_message.tool_call_id,
)
ObjectJsonSchema: TypeAlias = dict[str, Any]
"""Type representing JSON schema of an object, e.g. where `"type": "object"`.
This type is used to define tools parameters (aka arguments) in [ToolDefinition][pydantic_ai.tools.ToolDefinition].
With PEP-728 this should be a TypedDict with `type: Literal['object']`, and `extra_parts=Any`
"""
@dataclass
class ToolDefinition:
"""Definition of a tool passed to a model.
This is used for both function tools result tools.
"""
name: str
"""The name of the tool."""
description: str
"""The description of the tool."""
parameters_json_schema: ObjectJsonSchema
"""The JSON schema for the tool's parameters."""
outer_typed_dict_key: str | None = None
"""The key in the outer [TypedDict] that wraps a result tool.
This will only be set for result tools which don't have an `object` JSON schema.
"""