forked from traveller59/second.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsubmission.py
221 lines (168 loc) · 6.13 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# In[2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from tqdm import tqdm
import pickle
from pathlib import Path
from nuscenes import NuScenes
from scipy.spatial.transform import Rotation as R
from math import cos, sin, pi
from lyft_dataset_sdk.lyftdataset import *
from lyft_dataset_sdk.utils.data_classes import LidarPointCloud, Box, Quaternion
from lyft_dataset_sdk.utils.geometry_utils import view_points, transform_matrix
from second.pytorch.train import build_network, example_convert_to_torch
from second.data.preprocess import merge_second_batch
# In[3]:
import torch
from second.pytorch.builder import (box_coder_builder, input_reader_builder,
lr_scheduler_builder, optimizer_builder,
second_builder)
from google.protobuf import text_format
from second.utils import simplevis
from second.pytorch.train import build_network
from second.protos import pipeline_pb2
from second.utils import config_tool
# In[4]:
# phase = 'test'
# data = 'v1.0-trainval' if phase=='train' else 'v1.0-test'
# lyft = LyftDataset(data_path=f'../../data/lyft/{phase}/', json_path=f'../../data/lyft/{phase}/{data}/', verbose=0)
# nusc = NuScenes(dataroot=f'../../data/lyft/{phase}/', version=data, verbose=0)
# ## Read Config file
# In[5]:
torch.set_num_threads(8)
config_path = "configs/nuscenes/all.fhd.config.309"
config = pipeline_pb2.TrainEvalPipelineConfig()
with open(config_path, "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, config)
input_cfg = config.eval_input_reader
model_cfg = config.model.second
# config_tool.change_detection_range_v2(model_cfg, [-50, -50, 50, 50])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#device = torch.device("cpu")
# ## Build Network, Target Assigner and Voxel Generator
# In[6]:
#info_path = input_cfg.dataset.kitti_info_path
#root_path = input_cfg.dataset.kitti_root_path
info_path = '../../data/lyft/test/infos_test.pkl'
root_path = '../../data/lyft/test/'
with open(info_path, 'rb') as f:
infos = pickle.load(f)
df = pd.read_csv('../../data/lyft/sample_submission.csv')
#df = pd.read_csv('../../data/lyft/train.csv')
# In[7]:
token2info = {}
for info in infos['infos']:
token2info[info['token']] = info
# In[8]:
def thresholded_pred(pred, threshold):
box3d = pred["box3d_lidar"].detach().cpu().numpy()
scores = pred["scores"].detach().cpu().numpy()
labels = pred["label_preds"].detach().cpu().numpy()
idx = np.where(scores > threshold)[0]
# filter low score ones
box3d = box3d[idx, :]
# label is one-dim
labels = np.take(labels, idx)
scores = np.take(scores, idx)
pred['box3d_lidar'] = box3d
pred['scores'] = scores
pred['label_preds'] = labels
return pred
# In[9]:
ckpt_path = "/home/ags/second_test/all_fhd.30/voxelnet-29369.tckpt"
net = build_network(config.model.second).to(device).float().eval()
net.load_state_dict(torch.load(ckpt_path))
eval_input_cfg = config.eval_input_reader
eval_input_cfg.dataset.kitti_root_path = root_path
eval_input_cfg.dataset.kitti_info_path = info_path
dataset = input_reader_builder.build(
eval_input_cfg,
config.model.second,
training=False,
voxel_generator=net.voxel_generator,
target_assigner=net.target_assigner)#.dataset
batch_size = 4
num_workers = 4
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size, # only support multi-gpu train
shuffle=False,
num_workers=num_workers,
pin_memory=False,
collate_fn=merge_second_batch)
target_assigner = net.target_assigner
voxel_generator = net.voxel_generator
classes = target_assigner.classes
# ### utility functions
# In[10]:
def to_glb(box, info):
# lidar -> ego -> global
# info should belong to exact same element in `gt` dict
box.rotate(Quaternion(info['lidar2ego_rotation']))
box.translate(np.array(info['lidar2ego_translation']))
box.rotate(Quaternion(info['ego2global_rotation']))
box.translate(np.array(info['ego2global_translation']))
return box
# In[11]:
def get_pred_str(pred, sample_token):
boxes_lidar = pred["box3d_lidar"]
boxes_class = pred["label_preds"]
scores = pred['scores']
preds_classes = [classes[x] for x in boxes_class]
box_centers = boxes_lidar[:, :3]
box_yaws = boxes_lidar[:, -1]
box_wlh = boxes_lidar[:, 3:6]
info = token2info[sample_token] # a `sample` token
boxes = []
pred_str = ''
for idx in range(len(boxes_lidar)):
translation = box_centers[idx]
yaw = - box_yaws[idx] - pi/2
size = box_wlh[idx]
name = preds_classes[idx]
detection_score = scores[idx]
quat = Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)])
box = Box(
center=box_centers[idx],
size=size,
orientation=quat,
score=detection_score,
name=name,
token=sample_token
)
box = to_glb(box, info)
pred = str(box.score) + ' ' + str(box.center[0]) + ' ' \
+ str(box.center[1]) + ' ' + str(box.center[2]) + ' ' \
+ str(box.wlh[0]) + ' ' + str(box.wlh[1]) + ' ' + \
str(box.wlh[2]) + ' ' + str(box.orientation.yaw_pitch_roll[0]) \
+ ' ' + str(name) + ' '
pred_str += pred
return pred_str.strip()
# In[12]:
token2predstr = {}
detections = []
#tokens = []
tk0 = tqdm(dataloader, total=len(dataloader))
for idx, examples in enumerate(tk0):
try:
example_torch = example_convert_to_torch(examples, device=device)
detections += net(example_torch)
#tokens += examples['metadata']
except Exception as e:
print(e)
import pdb; pdb.set_trace()
threshold = 0.2
for idx, pred in enumerate(tqdm(detections)):
pred = thresholded_pred(pred, threshold)
#token = tokens[idx]['token']
token = pred['metadata']['token']
pred_str = get_pred_str(pred, token)
index = df[df['Id'] == token].index[0]
df.loc[index, 'PredictionString'] = pred_str
df.to_csv(f'final.csv', index=False)