forked from traveller59/second.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval.py
218 lines (179 loc) · 6.46 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
'''
This script takes in raw detections (net() outputs, in lidar frame) [use submission.ipynb] and ground truth boxes global frame to calculate lyft's mAP metric
'''
import time
import pickle
from math import cos, sin, pi
from copy import deepcopy
from tqdm import tqdm
from second.data.nusc_eval import *
from lyft_dataset_sdk.lyftdataset import *
def thresholded_pred(pred, threshold):
pred = deepcopy(pred)
box3d = pred["box3d_lidar"]#.detach().cpu().numpy()
scores = pred["scores"]#.detach().cpu().numpy()
labels = pred["label_preds"]#.detach().cpu().numpy()
idx = np.where(scores > threshold)[0]
# filter low score ones
box3d = box3d[idx, :]
# label is one-dim
labels = np.take(labels, idx)
scores = np.take(scores, idx)
pred['box3d_lidar'] = box3d
pred['scores'] = scores
pred['label_preds'] = labels
return pred
def to_glb(box, info):
# lidar -> ego -> global
# info should belong to exact same element in `gt` dict
box.rotate(Quaternion(info['lidar2ego_rotation']))
box.translate(np.array(info['lidar2ego_translation']))
'''
# filter det in ego.
cls_range_map = eval_detection_configs[eval_version]["class_range"]
radius = np.linalg.norm(box.center[:2], 2)
det_range = cls_range_map[classes[box.label]]
if radius > det_range:
continue
'''
box.rotate(Quaternion(info['ego2global_rotation']))
box.translate(np.array(info['ego2global_translation']))
return box
def get_pred_glb(pred, sample_token, classes, token2info):
boxes_lidar = pred["box3d_lidar"]
boxes_class = pred["label_preds"]
scores = pred['scores']
preds_classes = [classes[x] for x in boxes_class]
box_centers = boxes_lidar[:, :3]
box_yaws = boxes_lidar[:, -1]
box_wlh = boxes_lidar[:, 3:6]
info = token2info[sample_token] # a `sample` token
boxes = []
for idx in range(len(boxes_lidar)):
translation = box_centers[idx]
yaw = - box_yaws[idx] - pi/2 # second to lyft format
size = box_wlh[idx]
name = preds_classes[idx]
detection_score = scores[idx]
quat = Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)])
box = Box(
center=box_centers[idx],
size=size,
orientation=quat,
score=detection_score,
name=name,
token=sample_token
)
box = to_glb(box, info)
boxes.append(box)
return boxes
def serialize(box):
return {
'sample_token': box.token,
'translation': list(box.center),
'size': list(box.wlh),
'rotation': list(box.orientation.elements),
'name': box.name,
'score': box.score
}
def main(det_file, phase='train'):
'''
det_file: pkl file containing raw detections (just out of net(), in lidar's frame)
flow:
1. get the detections to global from using transformation matrices stored in info pickle files, and get the serialized repr of the boxes in a list.
2. read the ground truth global frame serialized boxes.
3. use eval functions in nusc_eval.py to calculate mAP, using multiprocessing.
4. save the metrics to notebooks/.tmp/ directory
'''
t0 = time.time()
output_dir = Path('notebooks/.tmp')
det_file = Path(det_file)
print(f'Phase: {phase}')
root = Path('/media/ags/DATA/CODE/kaggle/lyft-3d-object-detection/')
gt_file = root / f'data/lyft/train/gt_data_{phase}.json'
info_path = root / f'data/lyft/train/infos_{phase}.pkl'
'''
gt_file = root / f'data/nuscenes/v1.0-trainval/gt_data_{phase}.json'
info_path = root / f'data/nuscenes/v1.0-trainval/infos_{phase}.pkl'
'''
with open(str(info_path), 'rb') as f:
infos = pickle.load(f)
token2info = {}
for info in infos['infos']:
token2info[info['token']] = info
del infos
with open(str(det_file), 'rb') as f:
detections = pickle.load(f)#[:2000]
with open(str(gt_file)) as f:
gboxes = json.load(f)
classes = ['car', 'bicycle', 'animal', 'bus',
'emergency_vehicle', 'other_vehicle',
'motorcycle', 'pedestrian', 'truck']
'''
classes = [
'car',
'bicycle',
'bus',
'construction_vehicle',
'motorcycle',
'pedestrian',
'traffic_cone',
'trailer',
'truck'
'barrier'
]
'''
# order is imp., raw detections' labels are indices acc to above list
# order is dicided by the order of class definitions in config file
threshold = 0.2
pboxes = []
print('Processing raw predictions..')
for idx, pred in enumerate(tqdm(detections)):
pred = thresholded_pred(pred, threshold)
token = pred['metadata']['token']
boxes = get_pred_glb(pred, token, classes, token2info)
pboxes.extend([serialize(box) for box in boxes])
del detections
classes = list(sorted(classes)) # now classes can be sorted.
print('Done')
print('Starting mAP computation..')
# now we have all serialized pred boxes in pboxes and gt boxes in gboxes
iou_th_range = np.linspace(0.5, 0.95, 10) # 0.5, 0.55, ..., 0.90, 0.95
def process_range(start, end):
processes = []
for iou_threshold in iou_th_range[start:end]:
process = Process(target=save_ap,
args=(gboxes, pboxes, classes, iou_threshold, output_dir))
process.start()
processes.append(process)
for process in processes:
process.join()
'''
if phase == 'train':
process_range(0, 10)
print('got half way through,..')
process_range(5, 10)
else:
process_range(0, 10)
'''
# nusc's got large val set
process_range(0, 10)
#process_range(2, 4)
#process_range(4, 6)
#process_range(6, 8)
#process_range(8, 10)
metric, overall_ap = get_metric_overall_ap(iou_th_range, output_dir, classes)
mAP = np.mean(overall_ap)
metric['overall'] = {c: overall_ap[idx] for idx, c in enumerate(classes)}
metric['mAP'] = mAP
summary_path = output_dir / f'{det_file.name}.json'
with open(str(summary_path), 'w') as f:
json.dump(metric, f, indent=4)
print(f'{json.dumps(metric, indent=2)}')
diff = time.time() - t0
print("Total time taken : %02d:%02d" % (diff // 60, diff % 60))
if __name__ == "__main__":
fire.Fire(main)
'''
python eval.py --det_file /home/ags/second_test/all.pp.mhead.config.13/detections/voxelnet-58650_val.pkl --phase val
'''