-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangle.h
307 lines (291 loc) · 10.9 KB
/
triangle.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#ifndef TRIANGLE_H_INCLUDED
#define TRIANGLE_H_INCLUDED
#include "vector.h"
#include "image.h"
#include "matrix.h"
#include <algorithm>
#include <utility> // for std::hash<T>
using namespace std;
struct TextureCoord
{
float u, v;
constexpr TextureCoord(float u, float v)
: u(u), v(v)
{
}
constexpr TextureCoord()
: u(0), v(0)
{
}
friend constexpr bool operator ==(TextureCoord a, TextureCoord b)
{
return a.u == b.u && a.v == b.v;
}
friend constexpr bool operator !=(TextureCoord a, TextureCoord b)
{
return !(a == b);
}
};
namespace std
{
template <>
struct hash<TextureCoord>
{
hash<float> floatHasher;
size_t operator ()(TextureCoord t) const
{
return 2 * floatHasher(t.u) + floatHasher(t.v);
}
};
}
constexpr TextureCoord interpolate(float v, TextureCoord a, TextureCoord b)
{
return TextureCoord(interpolate(v, a.u, b.u), interpolate(v, a.v, b.v));
}
struct Vertex
{
TextureCoord t;
VectorF p;
ColorF c;
VectorF n;
Vertex()
{
}
constexpr Vertex(VectorF p, TextureCoord t, ColorF c, VectorF n)
: t(t), p(p), c(c), n(n)
{
}
friend constexpr bool operator ==(Vertex a, Vertex b)
{
return a.t == b.t && a.p == b.p && a.c == b.c && a.n == b.n;
}
friend constexpr bool operator !=(Vertex a, Vertex b)
{
return !(a == b);
}
};
namespace std
{
template <>
struct hash<Vertex>
{
hash<TextureCoord> textureCoordHasher;
hash<VectorF> vectorHasher;
hash<ColorF> colorHasher;
size_t operator ()(const Vertex &v) const
{
return vectorHasher(v.p) + 2 * vectorHasher(v.n) + 3 * textureCoordHasher(v.t) + 5 * colorHasher(v.c);
}
};
}
constexpr Vertex interpolate(float v, Vertex a, Vertex b) // doesn't normalize
{
return Vertex(interpolate(v, a.p, b.p), interpolate(v, a.t, b.t), interpolate(v, a.c, b.c), interpolate(v, a.n, b.n));
}
struct Triangle
{
TextureCoord t1, t2, t3;
VectorF p1, p2, p3;
ColorF c1, c2, c3;
VectorF n1, n2, n3;
Triangle(VectorF p1, VectorF p2, VectorF p3, ColorF color = RGBAF(1, 1, 1, 1))
: t1(0, 0), t2(0, 0), t3(0, 0), p1(p1), p2(p2), p3(p3), c1(color), c2(color), c3(color), n1(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n2(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n3(normalizeNoThrow(cross(p1 - p2, p1 - p3)))
{
}
Triangle(VectorF p1, TextureCoord t1, VectorF p2, TextureCoord t2, VectorF p3, TextureCoord t3, ColorF color = RGBAF(1, 1, 1, 1))
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(color), c2(color), c3(color), n1(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n2(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n3(normalizeNoThrow(cross(p1 - p2, p1 - p3)))
{
}
Triangle(VectorF p1, ColorF c1, VectorF p2, ColorF c2, VectorF p3, ColorF c3)
: t1(0, 0), t2(0, 0), t3(0, 0), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n2(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n3(normalizeNoThrow(cross(p1 - p2, p1 - p3)))
{
}
Triangle(VectorF p1, TextureCoord t1, ColorF c1, VectorF p2, TextureCoord t2, ColorF c2, VectorF p3, TextureCoord t3, ColorF c3)
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n2(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n3(normalizeNoThrow(cross(p1 - p2, p1 - p3)))
{
}
Triangle(VectorF p1, ColorF c1, TextureCoord t1, VectorF p2, ColorF c2, TextureCoord t2, VectorF p3, ColorF c3, TextureCoord t3)
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n2(normalizeNoThrow(cross(p1 - p2, p1 - p3))), n3(normalizeNoThrow(cross(p1 - p2, p1 - p3)))
{
}
constexpr Triangle(VectorF p1, VectorF n1, VectorF p2, VectorF n2, VectorF p3, VectorF n3, ColorF color = RGBAF(1, 1, 1, 1))
: t1(0, 0), t2(0, 0), t3(0, 0), p1(p1), p2(p2), p3(p3), c1(color), c2(color), c3(color), n1(n1), n2(n2), n3(n3)
{
}
constexpr Triangle(VectorF p1, TextureCoord t1, VectorF n1, VectorF p2, TextureCoord t2, VectorF n2, VectorF p3, TextureCoord t3, VectorF n3, ColorF color = RGBAF(1, 1, 1, 1))
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(color), c2(color), c3(color), n1(n1), n2(n2), n3(n3)
{
}
constexpr Triangle(VectorF p1, ColorF c1, VectorF n1, VectorF p2, ColorF c2, VectorF n2, VectorF p3, ColorF c3, VectorF n3)
: t1(0, 0), t2(0, 0), t3(0, 0), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(n1), n2(n2), n3(n3)
{
}
constexpr Triangle(VectorF p1, TextureCoord t1, ColorF c1, VectorF n1, VectorF p2, TextureCoord t2, ColorF c2, VectorF n2, VectorF p3, TextureCoord t3, ColorF c3, VectorF n3)
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(n1), n2(n2), n3(n3)
{
}
constexpr Triangle(VectorF p1, ColorF c1, TextureCoord t1, VectorF n1, VectorF p2, ColorF c2, TextureCoord t2, VectorF n2, VectorF p3, ColorF c3, TextureCoord t3, VectorF n3)
: t1(t1), t2(t2), t3(t3), p1(p1), p2(p2), p3(p3), c1(c1), c2(c2), c3(c3), n1(n1), n2(n2), n3(n3)
{
}
constexpr Triangle()
: t1(0, 0), t2(0, 0), t3(0, 0), p1(0), p2(0), p3(0), c1(RGBAF(1, 1, 1, 1)), c2(RGBAF(1, 1, 1, 1)), c3(RGBAF(1, 1, 1, 1)), n1(0), n2(0), n3(0)
{
}
constexpr Triangle(Vertex v1_, Vertex v2_, Vertex v3_)
: t1(v1_.t), t2(v2_.t), t3(v3_.t), p1(v1_.p), p2(v2_.p), p3(v3_.p), c1(v1_.c), c2(v2_.c), c3(v3_.c), n1(v1_.n), n2(v2_.n), n3(v3_.n)
{
}
constexpr VectorF point_cross() const
{
return cross(p1 - p2, p1 - p3);
}
constexpr bool empty() const
{
return absSquared(point_cross()) < eps * eps * eps * eps;
}
VectorF normal() const
{
return normalizeNoThrow(point_cross());
}
constexpr Vertex v1() const
{
return Vertex(p1, t1, c1, n1);
}
constexpr Vertex v2() const
{
return Vertex(p2, t2, c2, n2);
}
constexpr Vertex v3() const
{
return Vertex(p3, t3, c3, n3);
}
};
inline Triangle transform(const Transform & m, const Triangle & t)
{
return Triangle(transform(m, t.p1), t.t1, t.c1, transformNormal(m, t.n1),
transform(m, t.p2), t.t2, t.c2, transformNormal(m, t.n2),
transform(m, t.p3), t.t3, t.c3, transformNormal(m, t.n3));
}
inline Vertex transform(Transform tform, Vertex v)
{
return Vertex(transform(tform, v.p), v.t, v.c, transformNormal(tform, v.n));
}
constexpr Triangle colorize(ColorF color, const Triangle & t)
{
return Triangle(t.p1, t.t1, colorize(color, t.c1), t.n1,
t.p2, t.t2, colorize(color, t.c2), t.n2,
t.p3, t.t3, colorize(color, t.c3), t.n3);
}
constexpr Triangle reverse(const Triangle & t)
{
return Triangle(t.p1, t.t1, t.c1, -t.n1, t.p3, t.t3, t.c3, -t.n3, t.p2, t.t2, t.c2, -t.n2);
}
struct CutTriangle final
{
Triangle frontTriangles[2];
size_t frontTriangleCount = 0;
Triangle coplanarTriangles[1];
size_t coplanarTriangleCount = 0;
Triangle backTriangles[2];
size_t backTriangleCount = 0;
private:
static void triangulate(Triangle triangles[], size_t &triangleCount, const Vertex vertices[], size_t vertexCount)
{
size_t myTriangleCount = 0;
if(vertexCount >= 3)
{
for(size_t i = 0, j = 1, k = 2; k < vertexCount; i++, j++, k++)
{
Triangle tri(vertices[0], vertices[j], vertices[k]);
triangles[myTriangleCount++] = tri;
}
}
triangleCount = myTriangleCount;
}
public:
CutTriangle(Triangle tri, VectorF planeNormal, float planeD)
{
const size_t triangleVertexCount = 3, resultMaxVertexCount = triangleVertexCount + 1;
Vertex triVertices[triangleVertexCount] = {tri.v1(), tri.v2(), tri.v3()};
float planeDistances[triangleVertexCount];
bool isFront[triangleVertexCount];
bool isBack[triangleVertexCount];
bool isCoplanar = true, anyFront = false;
for(size_t i = 0; i < triangleVertexCount; i++)
{
planeDistances[i] = dot(triVertices[i].p, planeNormal) + planeD;
isFront[i] = planeDistances[i] > eps;
isBack[i] = planeDistances[i] < -eps;
if(isFront[i] || isBack[i])
isCoplanar = false;
if(isFront[i])
anyFront = true;
}
if(isCoplanar)
{
coplanarTriangles[0] = tri;
coplanarTriangleCount = 1;
return;
}
if(anyFront)
{
for(size_t i = 0; i < triangleVertexCount; i++)
{
isFront[i] = !isBack[i];
}
}
Vertex frontVertices[resultMaxVertexCount];
size_t frontVertexCount = 0;
Vertex backVertices[resultMaxVertexCount];
size_t backVertexCount = 0;
for(size_t i = 0, j = 1; i < triangleVertexCount; i++, j++, j %= triangleVertexCount)
{
if(isFront[i])
{
if(isFront[j])
{
frontVertices[frontVertexCount++] = triVertices[i];
}
else
{
frontVertices[frontVertexCount++] = triVertices[i];
float divisor = dot(triVertices[j].p - triVertices[i].p, planeNormal);
if(abs(divisor) >= eps * eps)
{
float t = (-planeD - dot(triVertices[i].p, planeNormal)) / divisor;
Vertex v = interpolate(t, triVertices[i], triVertices[j]);
frontVertices[frontVertexCount++] = v;
backVertices[backVertexCount++] = v;
}
}
}
else
{
if(isFront[j])
{
backVertices[backVertexCount++] = triVertices[i];
float divisor = dot(triVertices[j].p - triVertices[i].p, planeNormal);
if(abs(divisor) >= eps * eps)
{
float t = (-planeD - dot(triVertices[i].p, planeNormal)) / divisor;
Vertex v = interpolate(t, triVertices[i], triVertices[j]);
frontVertices[frontVertexCount++] = v;
backVertices[backVertexCount++] = v;
}
}
else
{
backVertices[backVertexCount++] = triVertices[i];
}
}
}
triangulate(frontTriangles, frontTriangleCount, frontVertices, frontVertexCount);
triangulate(backTriangles, backTriangleCount, backVertices, backVertexCount);
}
};
inline CutTriangle cut(Triangle tri, VectorF planeNormal, float planeD)
{
return CutTriangle(tri, planeNormal, planeD);
}
#endif // TRIANGLE_H_INCLUDED