forked from frankligy/DeepImmuno
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepimmuno-cnn.py
243 lines (195 loc) · 8.24 KB
/
deepimmuno-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
'''
Program to run deepimmuno-cnn
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import layers
import numpy as np
import pandas as pd
import argparse
import os
def seperateCNN():
input1 = keras.Input(shape=(10, 12, 1))
input2 = keras.Input(shape=(46, 12, 1))
x = layers.Conv2D(filters=16, kernel_size=(2, 12))(input1) # 9
x = layers.BatchNormalization()(x)
x = keras.activations.relu(x)
x = layers.Conv2D(filters=32, kernel_size=(2, 1))(x) # 8
x = layers.BatchNormalization()(x)
x = keras.activations.relu(x)
x = layers.MaxPool2D(pool_size=(2, 1), strides=(2, 1))(x) # 4
x = layers.Flatten()(x)
x = keras.Model(inputs=input1, outputs=x)
y = layers.Conv2D(filters=16, kernel_size=(15, 12))(input2) # 32
y = layers.BatchNormalization()(y)
y = keras.activations.relu(y)
y = layers.MaxPool2D(pool_size=(2, 1), strides=(2, 1))(y) # 16
y = layers.Conv2D(filters=32,kernel_size=(9,1))(y) # 8
y = layers.BatchNormalization()(y)
y = keras.activations.relu(y)
y = layers.MaxPool2D(pool_size=(2, 1),strides=(2,1))(y) # 4
y = layers.Flatten()(y)
y = keras.Model(inputs=input2,outputs=y)
combined = layers.concatenate([x.output,y.output])
z = layers.Dense(128,activation='relu')(combined)
z = layers.Dropout(0.2)(z)
z = layers.Dense(1,activation='sigmoid')(z)
model = keras.Model(inputs=[input1,input2],outputs=z)
return model
def pull_peptide_aaindex(dataset):
result = np.empty([len(dataset),10,12,1])
for i in range(len(dataset)):
result[i,:,:,:] = dataset[i][0]
return result
def pull_hla_aaindex(dataset):
result = np.empty([len(dataset),46,12,1])
for i in range(len(dataset)):
result[i,:,:,:] = dataset[i][1]
return result
def pull_label_aaindex(dataset):
col = [item[2] for item in dataset]
result = [0 if item == 'Negative' else 1 for item in col]
result = np.expand_dims(np.array(result),axis=1)
return result
def pull_label_aaindex(dataset):
result = np.empty([len(dataset),1])
for i in range(len(dataset)):
result[i,:] = dataset[i][2]
return result
def aaindex(peptide,after_pca):
amino = 'ARNDCQEGHILKMFPSTWYV-'
matrix = np.transpose(after_pca) # [12,21]
encoded = np.empty([len(peptide), 12]) # (seq_len,12)
for i in range(len(peptide)):
query = peptide[i]
if query == 'X': query = '-'
query = query.upper()
encoded[i, :] = matrix[:, amino.index(query)]
return encoded
def peptide_data_aaindex(peptide,after_pca): # return numpy array [10,12,1]
length = len(peptide)
if length == 10:
encode = aaindex(peptide,after_pca)
elif length == 9:
peptide = peptide[:5] + '-' + peptide[5:]
encode = aaindex(peptide,after_pca)
encode = encode.reshape(encode.shape[0], encode.shape[1], -1)
return encode
def dict_inventory(inventory):
dicA, dicB, dicC = {}, {}, {}
dic = {'A': dicA, 'B': dicB, 'C': dicC}
for hla in inventory:
type_ = hla[4] # A,B,C
first2 = hla[6:8] # 01
last2 = hla[8:] # 01
try:
dic[type_][first2].append(last2)
except KeyError:
dic[type_][first2] = []
dic[type_][first2].append(last2)
return dic
def rescue_unknown_hla(hla, dic_inventory):
type_ = hla[4]
first2 = hla[6:8]
last2 = hla[8:]
big_category = dic_inventory[type_]
#print(hla)
if not big_category.get(first2) == None:
small_category = big_category.get(first2)
distance = [abs(int(last2) - int(i)) for i in small_category]
optimal = min(zip(small_category, distance), key=lambda x: x[1])[0]
return 'HLA-' + str(type_) + '*' + str(first2) + str(optimal)
else:
small_category = list(big_category.keys())
distance = [abs(int(first2) - int(i)) for i in small_category]
optimal = min(zip(small_category, distance), key=lambda x: x[1])[0]
return 'HLA-' + str(type_) + '*' + str(optimal) + str(big_category[optimal][0])
def hla_data_aaindex(hla_dic,hla_type,after_pca,dic_inventory): # return numpy array [46,12,1]
try:
seq = hla_dic[hla_type]
except KeyError:
hla_type = rescue_unknown_hla(hla_type,dic_inventory)
seq = hla_dic[hla_type]
encode = aaindex(seq,after_pca)
encode = encode.reshape(encode.shape[0], encode.shape[1], -1)
return encode
def construct_aaindex(ori,hla_dic,after_pca,dic_inventory):
series = []
for i in range(ori.shape[0]):
peptide = ori['peptide'].iloc[i]
hla_type = ori['HLA'].iloc[i]
immuno = np.array(ori['immunogenicity'].iloc[i]).reshape(1,-1) # [1,1]
encode_pep = peptide_data_aaindex(peptide,after_pca) # [10,12]
encode_hla = hla_data_aaindex(hla_dic,hla_type,after_pca,dic_inventory) # [46,12]
series.append((encode_pep, encode_hla, immuno))
return series
def hla_df_to_dic(hla):
dic = {}
for i in range(hla.shape[0]):
col1 = hla['HLA'].iloc[i] # HLA allele
col2 = hla['pseudo'].iloc[i] # pseudo sequence
dic[col1] = col2
return dic
def computing_s(peptide,mhc):
after_pca = np.loadtxt('./data/after_pca.txt')
hla = pd.read_csv('./data/hla2paratopeTable_aligned.txt',sep='\t')
hla_dic = hla_df_to_dic(hla)
inventory = list(hla_dic.keys())
dic_inventory = dict_inventory(inventory)
cnn_model = seperateCNN()
cnn_model.load_weights('./models/cnn_model_331_3_7/')
peptide_score = [peptide]
hla_score = [mhc]
immuno_score = ['0']
ori_score = pd.DataFrame({'peptide':peptide_score,'HLA':hla_score,'immunogenicity':immuno_score})
dataset_score = construct_aaindex(ori_score,hla_dic,after_pca,dic_inventory)
input1_score = pull_peptide_aaindex(dataset_score)
input2_score = pull_hla_aaindex(dataset_score)
label_score = pull_label_aaindex(dataset_score)
scoring = cnn_model.predict(x=[input1_score,input2_score])
return float(scoring)
def file_process(upload,download):
after_pca = np.loadtxt('./data/after_pca.txt')
hla = pd.read_csv('./data/hla2paratopeTable_aligned.txt',sep='\t')
hla_dic = hla_df_to_dic(hla)
inventory = list(hla_dic.keys())
dic_inventory = dict_inventory(inventory)
cnn_model = seperateCNN()
cnn_model.load_weights('./models/cnn_model_331_3_7/')
ori_score = pd.read_csv(upload, sep=',', header=None)
ori_score.columns = ['peptide', 'HLA']
ori_score['immunogenicity'] = ['0'] * ori_score.shape[0]
dataset_score = construct_aaindex(ori_score, hla_dic, after_pca, dic_inventory)
input1_score = pull_peptide_aaindex(dataset_score)
input2_score = pull_hla_aaindex(dataset_score)
label_score = pull_label_aaindex(dataset_score)
scoring = cnn_model.predict(x=[input1_score, input2_score])
scoring = cnn_model.predict(x=[input1_score, input2_score])
ori_score['immunogenicity'] = scoring
ori_score.to_csv(os.path.join(download,'deepimmuno-cnn-result.txt'), sep='\t', index=None)
def main(args):
mode = args.mode
if mode == 'single':
print("mode is single")
epitope = args.epitope
print("queried epitope is {}".format(epitope))
hla= args.hla
print("queried epitope is {}".format(hla))
score = computing_s(epitope,hla)
print(score)
elif mode == 'multiple':
print("mode is multiple")
intFile = args.intdir
print("input file is {}".format(intFile))
outFolder = args.outdir
print("output will be in {}".format(outFolder))
file_process(intFile,outFolder)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DeepImmuno-CNN command line')
parser.add_argument('--mode',type=str,default='single',help='single mode or multiple mode')
parser.add_argument('--epitope',type=str,default=None,help='if single mode, specifying your epitope')
parser.add_argument('--hla',type=str,default=None,help='if single mode, specifying your HLA allele')
parser.add_argument('--intdir',type=str,default=None,help='if multiple mode, specifying the path to your input file')
parser.add_argument('--outdir',type=str,default=None,help='if multiple mode, specifying the path to your output folder')
args = parser.parse_args()
main(args)