-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
529 lines (431 loc) · 18.5 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl.base import DGLError
from dgl.ops import edge_softmax
import dgl.function as fn
class Identity(nn.Module):
"""A placeholder identity operator that is argument-insensitive.
(Identity has already been supported by PyTorch 1.2, we will directly
import torch.nn.Identity in the future)
"""
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
"""Return input"""
return x
class MsgLinkPredictor(nn.Module):
"""Predict Pair wise link from pos subg and neg subg
use message passing.
Use Two layer MLP on edge to predict the link probability
Parameters
----------
embed_dim : int
dimension of each each feature's embedding
Example
----------
>>> linkpred = MsgLinkPredictor(10)
>>> pos_g = dgl.graph(([0,1,2,3,4],[1,2,3,4,0]))
>>> neg_g = dgl.graph(([0,1,2,3,4],[2,1,4,3,0]))
>>> x = torch.ones(5,10)
>>> linkpred(x,pos_g,neg_g)
(tensor([[0.0902],
[0.0902],
[0.0902],
[0.0902],
[0.0902]], grad_fn=<AddmmBackward>),
tensor([[0.0902],
[0.0902],
[0.0902],
[0.0902],
[0.0902]], grad_fn=<AddmmBackward>))
"""
def __init__(self, emb_dim):
super(MsgLinkPredictor, self).__init__()
self.src_fc = nn.Linear(emb_dim, emb_dim)
self.dst_fc = nn.Linear(emb_dim, emb_dim)
self.out_fc = nn.Linear(emb_dim, 1)
def link_pred(self, edges):
src_hid = self.src_fc(edges.src['embedding'])
dst_hid = self.dst_fc(edges.dst['embedding'])
score = F.relu(src_hid+dst_hid)
score = self.out_fc(score)
return {'score': score}
def forward(self, x, pos_g, neg_g):
# Local Scope?
pos_g.ndata['embedding'] = x
neg_g.ndata['embedding'] = x
pos_g.apply_edges(self.link_pred)
neg_g.apply_edges(self.link_pred)
pos_escore = pos_g.edata['score']
neg_escore = neg_g.edata['score']
return pos_escore, neg_escore
class TimeEncode(nn.Module):
"""Use finite fourier series with different phase and frequency to encode
time different between two event
..math::
\Phi(t) = [\cos(\omega_0t+\psi_0),\cos(\omega_1t+\psi_1),...,\cos(\omega_nt+\psi_n)]
Parameter
----------
dimension : int
Length of the fourier series. The longer it is ,
the more timescale information it can capture
Example
----------
>>> tecd = TimeEncode(10)
>>> t = torch.tensor([[1]])
>>> tecd(t)
tensor([[[0.5403, 0.9950, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000]]], dtype=torch.float64, grad_fn=<CosBackward>)
"""
def __init__(self, dimension):
super(TimeEncode, self).__init__()
self.dimension = dimension
self.w = torch.nn.Linear(1, dimension)
self.w.weight = torch.nn.Parameter((torch.from_numpy(1 / 10 ** np.linspace(0, 9, dimension)))
.double().reshape(dimension, -1))
self.w.bias = torch.nn.Parameter(torch.zeros(dimension).double())
def forward(self, t):
t = t.unsqueeze(dim=2)
output = torch.cos(self.w(t))
return output
class MemoryModule(nn.Module):
"""Memory module as well as update interface
The memory module stores both historical representation in last_update_t
Parameters
----------
n_node : int
number of node of the entire graph
hidden_dim : int
dimension of memory of each node
Example
----------
Please refers to examples/pytorch/tgn/tgn.py;
examples/pytorch/tgn/train.py
"""
def __init__(self, n_node, hidden_dim):
super(MemoryModule, self).__init__()
self.n_node = n_node
self.hidden_dim = hidden_dim
self.reset_memory()
def reset_memory(self):
self.last_update_t = nn.Parameter(torch.zeros(
self.n_node).float(), requires_grad=False)
self.memory = nn.Parameter(torch.zeros(
(self.n_node, self.hidden_dim)).float(), requires_grad=False)
def backup_memory(self):
"""
Return a deep copy of memory state and last_update_t
For test new node, since new node need to use memory upto validation set
After validation, memory need to be backed up before run test set without new node
so finally, we can use backup memory to update the new node test set
"""
return self.memory.clone(), self.last_update_t.clone()
def restore_memory(self, memory_backup):
"""Restore the memory from validation set
Parameters
----------
memory_backup : (memory,last_update_t)
restore memory based on input tuple
"""
self.memory = memory_backup[0].clone()
self.last_update_t = memory_backup[1].clone()
# Which is used for attach to subgraph
def get_memory(self, node_idxs):
return self.memory[node_idxs, :]
# When the memory need to be updated
def set_memory(self, node_idxs, values):
self.memory[node_idxs, :] = values
def set_last_update_t(self, node_idxs, values):
self.last_update_t[node_idxs] = values
# For safety check
def get_last_update(self, node_idxs):
return self.last_update_t[node_idxs]
def detach_memory(self):
"""
Disconnect the memory from computation graph to prevent gradient be propagated multiple
times
"""
self.memory.detach_()
class MemoryOperation(nn.Module):
""" Memory update using message passing manner, update memory based on positive
pair graph of each batch with recurrent module GRU or RNN
Message function
..math::
m_i(t) = concat(memory_i(t^-),TimeEncode(t),v_i(t))
v_i is node feature at current time stamp
Aggregation function
..math::
\bar{m}_i(t) = last(m_i(t_1),...,m_i(t_b))
Update function
..math::
memory_i(t) = GRU(\bar{m}_i(t),memory_i(t-1))
Parameters
----------
updater_type : str
indicator string to specify updater
'rnn' : use Vanilla RNN as updater
'gru' : use GRU as updater
memory : MemoryModule
memory content for update
e_feat_dim : int
dimension of edge feature
temporal_dim : int
length of fourier series for time encoding
Example
----------
Please refers to examples/pytorch/tgn/tgn.py
"""
def __init__(self, updater_type, memory, e_feat_dim, temporal_encoder):
super(MemoryOperation, self).__init__()
updater_dict = {'gru': nn.GRUCell, 'rnn': nn.RNNCell}
self.memory = memory
memory_dim = self.memory.hidden_dim
self.temporal_encoder = temporal_encoder
self.message_dim = memory_dim+memory_dim + \
e_feat_dim+self.temporal_encoder.dimension
self.updater = updater_dict[updater_type](input_size=self.message_dim,
hidden_size=memory_dim)
self.memory = memory
# Here assume g is a subgraph from each iteration
def stick_feat_to_graph(self, g):
# How can I ensure order of the node ID
g.ndata['timestamp'] = self.memory.last_update_t[g.ndata[dgl.NID]]
g.ndata['memory'] = self.memory.memory[g.ndata[dgl.NID]]
def msg_fn_cat(self, edges):
src_delta_time = edges.data['timestamp'] - edges.src['timestamp']
time_encode = self.temporal_encoder(src_delta_time.unsqueeze(
dim=1)).view(len(edges.data['timestamp']), -1)
ret = torch.cat([edges.src['memory'], edges.dst['memory'],
edges.data['feats'], time_encode], dim=1)
return {'message': ret, 'timestamp': edges.data['timestamp']}
def agg_last(self, nodes):
timestamp, latest_idx = torch.max(nodes.mailbox['timestamp'], dim=1)
ret = nodes.mailbox['message'].gather(1, latest_idx.repeat(
self.message_dim).view(-1, 1, self.message_dim)).view(-1, self.message_dim)
return {'message_bar': ret.reshape(-1, self.message_dim), 'timestamp': timestamp}
def update_memory(self, nodes):
# It should pass the feature through RNN
ret = self.updater(
nodes.data['message_bar'].float(), nodes.data['memory'].float())
return {'memory': ret}
def forward(self, g):
self.stick_feat_to_graph(g)
g.update_all(self.msg_fn_cat, self.agg_last, self.update_memory)
return g
class EdgeGATConv(nn.Module):
'''Edge Graph attention compute the graph attention from node and edge feature then aggregate both node and
edge feature.
Parameter
==========
node_feats : int
number of node features
edge_feats : int
number of edge features
out_feats : int
number of output features
num_heads : int
number of heads in multihead attention
feat_drop : float, optional
drop out rate on the feature
attn_drop : float, optional
drop out rate on the attention weight
negative_slope : float, optional
LeakyReLU angle of negative slope.
residual : bool, optional
whether use residual connection
allow_zero_in_degree : bool, optional
If there are 0-in-degree nodes in the graph, output for those nodes will be invalid
since no message will be passed to those nodes. This is harmful for some applications
causing silent performance regression. This module will raise a DGLError if it detects
0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
and let the users handle it by themselves. Defaults: ``False``.
'''
def __init__(self,
node_feats,
edge_feats,
out_feats,
num_heads,
feat_drop=0.,
attn_drop=0.,
negative_slope=0.2,
residual=False,
activation=None,
allow_zero_in_degree=False):
super(EdgeGATConv, self).__init__()
self._num_heads = num_heads
self._node_feats = node_feats
self._edge_feats = edge_feats
self._out_feats = out_feats
self._allow_zero_in_degree = allow_zero_in_degree
self.fc_node = nn.Linear(
self._node_feats, self._out_feats*self._num_heads)
self.fc_edge = nn.Linear(
self._edge_feats, self._out_feats*self._num_heads)
self.attn_l = nn.Parameter(torch.FloatTensor(
size=(1, self._num_heads, self._out_feats)))
self.attn_r = nn.Parameter(torch.FloatTensor(
size=(1, self._num_heads, self._out_feats)))
self.attn_e = nn.Parameter(torch.FloatTensor(
size=(1, self._num_heads, self._out_feats)))
self.feat_drop = nn.Dropout(feat_drop)
self.attn_drop = nn.Dropout(attn_drop)
self.leaky_relu = nn.LeakyReLU(negative_slope)
self.residual = residual
if residual:
if self._node_feats != self._out_feats:
self.res_fc = nn.Linear(
self._node_feats, self._out_feats*self._num_heads, bias=False)
else:
self.res_fc = Identity()
self.reset_parameters()
self.activation = activation
def reset_parameters(self):
gain = nn.init.calculate_gain('relu')
nn.init.xavier_normal_(self.fc_node.weight, gain=gain)
nn.init.xavier_normal_(self.fc_edge.weight, gain=gain)
nn.init.xavier_normal_(self.attn_l, gain=gain)
nn.init.xavier_normal_(self.attn_r, gain=gain)
nn.init.xavier_normal_(self.attn_e, gain=gain)
if self.residual and isinstance(self.res_fc, nn.Linear):
nn.init.xavier_normal_(self.res_fc.weight, gain=gain)
def msg_fn(self, edges):
ret = edges.data['a'].view(-1, self._num_heads,
1)*edges.data['el_prime']
return {'m': ret}
def forward(self, graph, nfeat, efeat, get_attention=False):
with graph.local_scope():
if not self._allow_zero_in_degree:
if (graph.in_degrees() == 0).any():
raise DGLError('There are 0-in-degree nodes in the graph, '
'output for those nodes will be invalid. '
'This is harmful for some applications, '
'causing silent performance regression. '
'Adding self-loop on the input graph by '
'calling `g = dgl.add_self_loop(g)` will resolve '
'the issue. Setting ``allow_zero_in_degree`` '
'to be `True` when constructing this module will '
'suppress the check and let the code run.')
nfeat = self.feat_drop(nfeat)
efeat = self.feat_drop(efeat)
node_feat = self.fc_node(
nfeat).view(-1, self._num_heads, self._out_feats)
edge_feat = self.fc_edge(
efeat).view(-1, self._num_heads, self._out_feats)
el = (node_feat*self.attn_l).sum(dim=-1).unsqueeze(-1)
er = (node_feat*self.attn_r).sum(dim=-1).unsqueeze(-1)
ee = (edge_feat*self.attn_e).sum(dim=-1).unsqueeze(-1)
graph.ndata['ft'] = node_feat
graph.ndata['el'] = el
graph.ndata['er'] = er
graph.edata['ee'] = ee
graph.apply_edges(fn.u_add_e('el', 'ee', 'el_prime'))
graph.apply_edges(fn.e_add_v('el_prime', 'er', 'e'))
e = self.leaky_relu(graph.edata['e'])
graph.edata['a'] = self.attn_drop(edge_softmax(graph, e))
graph.edata['efeat'] = edge_feat
graph.update_all(self.msg_fn, fn.sum('m', 'ft'))
rst = graph.ndata['ft']
if self.residual:
resval = self.res_fc(nfeat).view(
nfeat.shape[0], -1, self._out_feats)
rst = rst + resval
if self.activation:
rst = self.activation(rst)
if get_attention:
return rst, graph.edata['a']
else:
return rst
class TemporalEdgePreprocess(nn.Module):
'''Preprocess layer, which finish time encoding and concatenate
the time encoding to edge feature.
Parameter
==========
edge_feats : int
number of orginal edge feature
temporal_encoder : torch.nn.Module
time encoder model
'''
def __init__(self, edge_feats, temporal_encoder):
super(TemporalEdgePreprocess, self).__init__()
self.edge_feats = edge_feats
self.temporal_encoder = temporal_encoder
def edge_fn(self, edges):
t0 = torch.zeros_like(edges.dst['timestamp'])
time_diff = edges.data['timestamp'] - edges.src['timestamp']
time_encode = self.temporal_encoder(
time_diff.unsqueeze(dim=1)).view(t0.shape[0], -1)
edge_feat = torch.cat([edges.data['feats'], time_encode], dim=1)
return {'efeat': edge_feat}
def forward(self, graph):
graph.apply_edges(self.edge_fn)
efeat = graph.edata['efeat']
return efeat
class TemporalTransformerConv(nn.Module):
def __init__(self,
edge_feats,
memory_feats,
temporal_encoder,
out_feats,
num_heads,
allow_zero_in_degree=False,
layers=1):
'''Temporal Transformer model for TGN and TGAT
Parameter
==========
edge_feats : int
number of edge features
memory_feats : int
dimension of memory vector
temporal_encoder : torch.nn.Module
compute fourier time encoding
out_feats : int
number of out features
num_heads : int
number of attention head
allow_zero_in_degree : bool, optional
If there are 0-in-degree nodes in the graph, output for those nodes will be invalid
since no message will be passed to those nodes. This is harmful for some applications
causing silent performance regression. This module will raise a DGLError if it detects
0-in-degree nodes in input graph. By setting ``True``, it will suppress the check
and let the users handle it by themselves. Defaults: ``False``.
'''
super(TemporalTransformerConv, self).__init__()
self._edge_feats = edge_feats
self._memory_feats = memory_feats
self.temporal_encoder = temporal_encoder
self._out_feats = out_feats
self._allow_zero_in_degree = allow_zero_in_degree
self._num_heads = num_heads
self.layers = layers
self.preprocessor = TemporalEdgePreprocess(
self._edge_feats, self.temporal_encoder)
self.layer_list = nn.ModuleList()
self.layer_list.append(EdgeGATConv(node_feats=self._memory_feats,
edge_feats=self._edge_feats+self.temporal_encoder.dimension,
out_feats=self._out_feats,
num_heads=self._num_heads,
feat_drop=0.6,
attn_drop=0.6,
residual=True,
allow_zero_in_degree=allow_zero_in_degree))
for i in range(self.layers-1):
self.layer_list.append(EdgeGATConv(node_feats=self._out_feats*self._num_heads,
edge_feats=self._edge_feats+self.temporal_encoder.dimension,
out_feats=self._out_feats,
num_heads=self._num_heads,
feat_drop=0.6,
attn_drop=0.6,
residual=True,
allow_zero_in_degree=allow_zero_in_degree))
def forward(self, graph, memory, ts):
graph = graph.local_var()
graph.ndata['timestamp'] = ts
efeat = self.preprocessor(graph).float()
rst = memory
for i in range(self.layers-1):
rst = self.layer_list[i](graph, rst, efeat).flatten(1)
rst = self.layer_list[-1](graph, rst, efeat).mean(1)
return rst