-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
125 lines (113 loc) · 4.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import time
from tqdm import tqdm
from graphwriter import *
from utlis import *
from opts import *
import os
import sys
sys.path.append('./pycocoevalcap')
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.meteor.meteor import Meteor
def train_one_epoch(model, dataloader, optimizer, args, epoch):
model.train()
tloss = 0.
tcnt = 0.
st_time = time.time()
with tqdm(dataloader, desc='Train Ep '+str(epoch), mininterval=60) as tq:
for batch in tq:
pred = model(batch)
nll_loss = F.nll_loss(pred.view(-1, pred.shape[-1]), batch['tgt_text'].view(-1), ignore_index=0)
loss = nll_loss
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
loss = loss.item()
if loss!=loss:
raise ValueError('NaN appear')
tloss += loss * len(batch['tgt_text'])
tcnt += len(batch['tgt_text'])
tq.set_postfix({'loss': tloss/tcnt}, refresh=False)
print('Train Ep ', str(epoch), 'AVG Loss ', tloss/tcnt, 'Steps ', tcnt, 'Time ', time.time()-st_time, 'GPU', torch.cuda.max_memory_cached()/1024.0/1024.0/1024.0)
torch.save(model, args.save_model+str(epoch%100))
val_loss = 2**31
def eval_it(model, dataloader, args, epoch):
global val_loss
model.eval()
tloss = 0.
tcnt = 0.
st_time = time.time()
with tqdm(dataloader, desc='Eval Ep '+str(epoch), mininterval=60) as tq:
for batch in tq:
with torch.no_grad():
pred = model(batch)
nll_loss = F.nll_loss(pred.view(-1, pred.shape[-1]), batch['tgt_text'].view(-1), ignore_index=0)
loss = nll_loss
loss = loss.item()
tloss += loss * len(batch['tgt_text'])
tcnt += len(batch['tgt_text'])
tq.set_postfix({'loss': tloss/tcnt}, refresh=False)
print('Eval Ep ', str(epoch), 'AVG Loss ', tloss/tcnt, 'Steps ', tcnt, 'Time ', time.time()-st_time)
if tloss/tcnt < val_loss:
print('Saving best model ', 'Ep ', epoch, ' loss ', tloss/tcnt)
torch.save(model, args.save_model+'best')
val_loss = tloss/tcnt
def test(model, dataloader, args):
scorer = Bleu(4)
m_scorer = Meteor()
r_scorer = Rouge()
hyp = []
ref = []
model.eval()
gold_file = open('tmp_gold.txt', 'w')
pred_file = open('tmp_pred.txt', 'w')
with tqdm(dataloader, desc='Test ', mininterval=1) as tq:
for batch in tq:
with torch.no_grad():
seq = model(batch, beam_size=args.beam_size)
r = write_txt(batch, batch['tgt_text'], gold_file, args)
h = write_txt(batch, seq, pred_file, args)
hyp.extend(h)
ref.extend(r)
hyp = dict(zip(range(len(hyp)), hyp))
ref = dict(zip(range(len(ref)), ref))
print(hyp[0], ref[0])
print('BLEU INP', len(hyp), len(ref))
print('BLEU', scorer.compute_score(ref, hyp)[0])
print('METEOR', m_scorer.compute_score(ref, hyp)[0])
print('ROUGE_L', r_scorer.compute_score(ref, hyp)[0])
gold_file.close()
pred_file.close()
def main(args):
if os.path.exists(args.save_dataset):
train_dataset, valid_dataset, test_dataset = pickle.load(open(args.save_dataset, 'rb'))
else:
train_dataset, valid_dataset, test_dataset = get_datasets(args.fnames, device=args.device, save=args.save_dataset)
args = vocab_config(args, train_dataset.ent_vocab, train_dataset.rel_vocab, train_dataset.text_vocab, train_dataset.ent_text_vocab, train_dataset.title_vocab)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_sampler = BucketSampler(train_dataset, batch_size=args.batch_size), \
collate_fn=train_dataset.batch_fn)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, \
shuffle=False, collate_fn=train_dataset.batch_fn)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, \
shuffle=False, collate_fn=train_dataset.batch_fn)
model = GraphWriter(args)
model.to(args.device)
if args.test:
model = torch.load(args.save_model)
model.args = args
print(model)
test(model, test_dataloader, args)
else:
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=0.9)
print(model)
for epoch in range(args.epoch):
train_one_epoch(model, train_dataloader, optimizer, args, epoch)
eval_it(model, valid_dataloader, args, epoch)
if __name__ == '__main__':
args = get_args()
main(args)