-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
149 lines (123 loc) · 5.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.optim as optim
import dgl
import numpy as np
import pickle as pkl
import argparse
from data_loader import load_data
from TAHIN import TAHIN
from utils import evaluate_auc, evaluate_acc, evaluate_f1_score, evaluate_logloss
def main(args):
#step 1: Check device
if args.gpu >= 0 and torch.cuda.is_available():
device = 'cuda:{}'.format(args.gpu)
else:
device = 'cpu'
#step 2: Load data
g, train_loader, eval_loader, test_loader, meta_paths, user_key, item_key = load_data(args.dataset, args.batch, args.num_workers, args.path)
g = g.to(device)
print('Data loaded.')
#step 3: Create model and training components
model = TAHIN(
g, meta_paths, args.in_size, args.out_size, args.num_heads, args.dropout
)
model = model.to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
print('Model created.')
#step 4: Training
print('Start training.')
best_acc = 0.0
kill_cnt = 0
for epoch in range(args.epochs):
# Training and validation using a full graph
model.train()
train_loss = []
for step, batch in enumerate(train_loader):
user, item, label = [_.to(device) for _ in batch]
logits = model.forward(g, user_key, item_key, user, item)
# compute loss
tr_loss = criterion(logits, label)
train_loss.append(tr_loss)
# backward
optimizer.zero_grad()
tr_loss.backward()
optimizer.step()
train_loss = np.sum(train_loss)
model.eval()
with torch.no_grad():
validate_loss = []
validate_acc = []
for step, batch in enumerate(eval_loader):
user, item, label = [_.to(device) for _ in batch]
logits = model.forward(g, user_key, item_key, user, item)
# compute loss
val_loss = criterion(logits, label)
val_acc = evaluate_acc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
validate_loss.append(val_loss)
validate_acc.append(val_acc)
validate_loss = np.sum(validate_loss)
validate_acc = np.mean(validate_acc)
#validate
if validate_acc > best_acc:
best_acc = validate_acc
best_epoch = epoch
torch.save(model.state_dict(), 'TAHIN'+'_'+args.dataset)
kill_cnt = 0
print("saving model...")
else:
kill_cnt += 1
if kill_cnt > args.early_stop:
print('early stop.')
print("best epoch:{}".format(best_epoch))
break
print("In epoch {}, Train Loss: {:.4f}, Valid Loss: {:.5}\n, Valid ACC: {:.5}".format(epoch, train_loss, validate_loss, validate_acc))
#test use the best model
model.eval()
with torch.no_grad():
model.load_state_dict(torch.load('TAHIN'+'_'+args.dataset))
test_loss = []
test_acc = []
test_auc = []
test_f1 = []
test_logloss = []
for step, batch in enumerate(test_loader):
user, item, label = [_.to(device) for _ in batch]
logits = model.forward(g, user_key, item_key, user, item)
# compute loss
loss = criterion(logits, label)
acc = evaluate_acc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
auc = evaluate_auc(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
f1 = evaluate_f1_score(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
log_loss = evaluate_logloss(logits.detach().cpu().numpy(), label.detach().cpu().numpy())
test_loss.append(loss)
test_acc.append(acc)
test_auc.append(auc)
test_f1.append(f1)
test_logloss.append(log_loss)
test_loss = np.sum(test_loss)
test_acc = np.mean(test_acc)
test_auc = np.mean(test_auc)
test_f1 = np.mean(test_f1)
test_logloss = np.mean(test_logloss)
print("Test Loss: {:.5}\n, Test ACC: {:.5}\n, AUC: {:.5}\n, F1: {:.5}\n, Logloss: {:.5}\n".format(test_loss, test_acc, test_auc, test_f1, test_logloss))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parser For Arguments', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='movielens', help='Dataset to use, default: movielens')
parser.add_argument('--path', default='./data', help='Path to save the data')
parser.add_argument('--model', default='TAHIN', help='Model Name')
parser.add_argument('--batch', default=128, type=int, help='Batch size')
parser.add_argument('--gpu', type=int, default='0', help='Set GPU Ids : Eg: For CPU = -1, For Single GPU = 0')
parser.add_argument('--epochs', type=int, default=500, help='Maximum number of epochs')
parser.add_argument('--wd', type=float, default=0, help='L2 Regularization for Optimizer')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate')
parser.add_argument('--num_workers', type=int, default=10, help='Number of processes to construct batches')
parser.add_argument('--early_stop', default=15, type=int, help='Patience for early stop.')
parser.add_argument('--in_size', default=128, type=int, help='Initial dimension size for entities.')
parser.add_argument('--out_size', default=128, type=int, help='Output dimension size for entities.')
parser.add_argument('--num_heads', default=1, type=int, help='Number of attention heads')
parser.add_argument('--dropout', default=0.1, type=float, help='Dropout.')
args = parser.parse_args()
print(args)
main(args)